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1. Introduction 93 

This document specifies the National Information Exchange Model (NIEM), an information sharing framework 94 
based on the World Wide Web Consortium (W3C) eXtensible Markup Language (XML) Schema.  In February 95 
2005, the U.S. Departments of Justice (DoJ) and Homeland Security (DHS) signed a cooperative agreement to 96 
jointly develop the NIEM by leveraging and expanding the Global Justice XML Data Model (GJXDM) into multiple 97 
domains.  The NIEM is a result of a combined government and industry effort to improve information 98 
interoperability and exchange within the U.S. at federal, state, tribal, and local levels of government.   99 

The NIEM specifies a set of reusable information components for defining standard information exchange 100 
messages, transactions, and documents on a large scale across multiple communities of interest and lines of 101 
business.  These reusable components are rendered in W3C XML Schema.  The resulting schemas are available 102 
to government practitioners and developers at http://niem.gov/.  103 

The W3C XML Schema standard was designed to enable information interoperability and sharing by providing a 104 
common, extensible language for describing data precisely.  The constructs it defines are basic metadata building 105 
blocks – baseline data types and structural components.  Users employ these building blocks to describe their 106 
own domain-oriented data semantics and structures.  A reasonable set of rules and constraints governing what 107 
XML Schema constructs are allowed and how to use them (i.e. a framework) helps to ensure that resulting user 108 
data components can be reused and shared consistently.  This enhances information interoperability.   109 

The NIEM Naming and Design Rules specify principles and enforceable rules for NIEM data components and 110 
schemas.  This document is a product of the NIEM Program Management Office.  Audience 111 

The primary audience for this document is the justice practitioners and developers who employ XML for 112 
information exchange and interoperability.  The XML schemas rendered from the NIEM still offer schema 113 
designers much flexibility and freedom to extend types and create new properties to satisfy requirements at the 114 
local level.  However, these rules are intended to establish and, more importantly, enforce a degree of 115 
standardization at the national level.  116 

1.1. The NIEM Reference Architecture (In Brief) 117 

The NIEM is a reference model of unconstrained components rendered in XML Schema.  Associated with the 118 
NIEM schemas is an XML reference architecture that organizes and guides the employment of the various kinds 119 
of schemas that compose a NIEM information exchange.  The XML reference architecture is a visual 120 
representation of the relationships between XML schemas for NIEM Information Exchange Package 121 
Documentation (IEPD) depicted in Figure 1.  A NIEM IEPD is a set of artifacts that describe an Information 122 
Exchange Package, a standard message structure as defined by the Federal Enterprise Architecture 123 
Consolidated Reference Model Document.  Refer to the Global JXDM Information Exchange Package 124 
Documentation Guidelines, Version 1.1 for a more detailed explanation of IEPDs and their contents.  125 

Figure 1:  The NIEM Reference Architecture 126 
Error! Objects cannot be created from editing field codes. 127 

There are generally four categories of XML schemas used to specify the instances of a particular NIEM 128 
information exchange: 129 

• the NIEM schemas (or a subset thereof),  130 
• a constraint schema,  131 
• an extension schema, and  132 
• a document schema.   133 

The latter three schemas are optional.  The only mandatory schema is the NIEM base schema or a correct subset 134 
of it (Subset schema derivation is defined in Section 9: Subset Schemas).The NIEM schemas may import code 135 
table schemas (or subsets) as needed.  An optional document schema imports, re-uses, and organizes the 136 
components from the NIEM for the particular exchange.  An optional extension schema may be used to add 137 
extended types and properties for components not contained in the NIEM,.   138 

The document and extension schemas can be combined into a single schema and namespace, or can be broken 139 
out into separate schemas and corresponding namespaces.  The user may decide the best way to organize 140 
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components.  If the extension components will be reused elsewhere, it may be more efficient to maintain them in 141 
a separate namespace, rather than including them in a document namespace.   142 

The NIEM schemas are all inclusive and unconstrained.  By creating a subset, the user can limit the components 143 
to only those he needs.  Subsets can be created from the NIEM base schema and code table schemas as well.  144 
The basic principle for a subset is that an instance that validates against a correct subset schema will always 145 
validate against the full NIEM schema set.  The user may also adjust cardinality constraints as desired within the 146 
subset schemas.  Additional constraints can be handled in a constraint schema.  A constraint schema may be 147 
derived from the subset schema, however, it can contain other constraints (for example, xsd:choice).  The 148 
constraint schema provides a second constraint validation path that allows the user to reduce the possible set of 149 
correct XML instances independently from the NIEM schema or subset conformance validation path.  This is done 150 
through multi-pass validation.  A correctly constructed XML instance will validate through both the conformance 151 
and the constraint path.  152 

1.2. Scope 153 

This document is a specification for the NIEM 1.0.  It is not intended to specify beyond the NIEM 1.0 release.  The 154 
document addresses several issues: 155 

• Definition of NIEM-conformant schemas 156 
• Definition of NIEM-conformant reference schemas, on which schemas that are simply conformant are 157 

based 158 
• Definition of subsetting methodology, through which conformant schemas are built from conformant 159 

reference schemas 160 
• Naming of content to ensure understandability and reuse 161 
• Documentation of content to ensure comprehension 162 
• Definition of NIEM-conformant instances, which contain additional validation requirements, such as types 163 

associated with references and relationships. 164 

This document does not address the following: 165 

• A formal definition of the data model.  Such a definition would focus on RDF and concepts not strictly 166 
required for interoperability.  The document instead focuses on definition of schemas that work with the 167 
data model, to ensure translatability and interoperability. 168 

• Definition of versioning.  The NIEM distribution has a versioning mechanism in place, consisting of 169 
version numbers, with rules for what constitutes a "minor" or "major" change, and rules for inter-version 170 
compatibility.  Such rules are not strictly required for peer-level interoperability, and will be added at a later 171 
stage. 172 

• Definition of envelopes.  This document does not define mechanisms related to the transport of NIEM-173 
conformant data between two points. 174 

This document is intended as a technical specification.  It is not intended to be a tutorial. 175 

1.3. Audience 176 

The primary audience for this document is government practitioners and developers who employ XML for 177 
information exchange and interoperability.  Such information exchanges may be between organizations or within 178 
organizations.  The XML schemas rendered from the NIEM still offer schema designers much flexibility and 179 
freedom to extend types and create new properties to satisfy requirements at the local level.  However, these 180 
rules are intended to establish and, more importantly, enforce a degree of standardization on a national level. 181 

1.4. Document Conventions 182 

1.4.1. Logical Quoting 183 

This document uses "logical quoting", in which, when required, exact terms are placed within quotes, with 184 
supporting punctuation placed outside the quotes.  For example, when discussing a string with the value of "an 185 
exact value", we do not quote it as "an exact value," or as "an exact value."  For such cases, we would use "an 186 
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exact value", or "an exact value".  In these cases, punctuation is placed outside the quotes, instead of within the 187 
quotes, as it would be with traditional quoting. 188 

1.4.2. RFC 2119 Terminology 189 

Within normative content (rules and definitions), the key words MUST, MUST NOT, REQUIRED, SHALL, SHALL 190 
NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted 191 
as described in [RFC2119].   192 

1.4.3. References 193 

This document relies on references to many outside documents.  Such references are noted by bold, bracketed 194 
inline terms.  For example a reference to RFC 2119 is shown as [RFC2119].  All reference documents are 195 
recorded in Appendix C: References. 196 

1.4.4. XML Information Set Terminology 197 

The following terms are used as defined by [XMLInfoSet]: 198 

• Element parent 199 
• Element child 200 

Note that the "child" of an element is a direct, immediate child.  Children of an element, and their children, 201 
etc, will be referred to as "descendants" of that element. 202 

• Document element 203 

The term "document element" is preferred over "root element". 204 

• Attribute owner element 205 

An "owner element" is the element that possesses or contains the attribute. 206 

• Attribute references 207 
The "references" value of an attribute is the list of elements referred to by the IDREFS or IDREF value of 208 
an attribute. 209 

1.4.5. XML Schema Terminology  210 

The terms “W3C XML Schema” and “XSD” are used throughout this document. They are considered 211 
synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of the W3C XML Schema Definition 212 
Language (XSD) Recommendations ([XMLSchemaStructures] and [XMLSchemaDatatypes]). 213 

The term "schema component" is defined by XSD.  XML Schema contains specific definitions for various elements 214 
acting as particular types of schema components, including "model group definition schema component" and 215 
"Element declaration schema component".  Such definitions are referred to, rather than restated. 216 

1.4.6. Normative and Informative Content 217 

The NIEM NDR includes a variety of content.  Some text is normative (binding in implementations), while other 218 
content is informative, including supporting text and specific rationale for rules.  Some conventions used within the 219 
document include: 220 

[Definition: <term>] 221 

A formal definition of a term. Definitions are normative. 222 

[Principle <number>] 223 

A guiding principle for the NIEM.  The principles represent the requirements, concepts, and goals that 224 
have helped shape the NIEM.  Principles are informative, but act as the basis on which the rules are 225 
defined. 226 
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[Rule <category><number>] 227 

A binding rule.  The rules are normative.  They should state how they bind the users.  Most rules apply to 228 
conformant schemas (q.v.), while others apply to instances or reference schemas (q.v.). 229 

The rules are categorized, to make indexing simpler.  Categories for rules are as specified in Table 1: Rule 230 
Categories. 231 

Table 1: Rule Categories 232 
Rule short name Meaning 
ATD Attribute Definition Rules 
ATN Attribute Naming Rules 
CSR Constraint Schema Rules 
CTD Complex Type Definition Rules 
DOC Documentation Rules 
GNR General Naming Rules: Broadly-applicable rules for 

naming entities. 
GXS General XML Schema Rules 
IND Instance Document Rules 
SSR Subset Schema Rules 
STA Standards: The NIEM's relation to standards, standards 

compliance, and interpretation of standards 
STD Simple Type Definition Rules 
STR Structures: The NIEM's use of specific structural 

conventions to represent non-hierarchical data and object 
order. 

Rule identifiers that are deleted or recategorized will not be reused until a major release milestone is reached, at 233 
which point all identifiers may be reset. 234 

1.5. Syntax and Formatting 235 

Courier: All words appearing in courier font are values, objects, and keywords. 236 

Italics: All words appearing in italics, when not titles or used for emphasis, are special terms with definitions 237 
appearing in this document. 238 

Keywords: keywords reflect concepts or constructs expressed in the language of their source standard. Keywords 239 
have been given an identifying prefix to reflect their source.  The following prefixes are used: 240 

• xsd: represents W3C XML Schema Definition Language.  Use of the prefix "xsd" in schemas and 241 
instances is not required. 242 

• xsi: represents W3C XML Schema's XML Schema Instance namespace.  Use of the prefix "xsi" in 243 
schemas and instances is not required. 244 

• structures: represents the NIEM structures namespace.  Use of the prefix "structures" in schemas 245 
and instances is not required. 246 

• appinfo: represents the NIEM appinfo namespace.  Use of the prefix "appinfo" in schemas is not 247 
required.   248 

[Defintion: structures namespace] 249 

The structures namespace for NIEM is represented by the URI 250 
"http://niem.gov/niem/structures/1.0".  251 

 [Definition: appinfo namespace] 252 

The appinfo namespace for NIEM is represented by the URI 253 
"http://niem.gov/niem/appinfo/1.0". 254 

Rules and supporting text may use Extended Backus-Naur Form (EBNF) notation as defined by [XML].  255 
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See Appendix E: Glossary for additional term definitions.  256 
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2. Key Concepts and Terminology 257 

[Definition:  Appinfo Namespace] 258 

[Definition:  Structures Namespace] 259 

[Definition:  NIEM-conformant schema] 260 

[Definition:  NIEM-conformant reference schema] 261 

[Definition:  Documented Component] 262 

[Definition:  NIEM-conformant subset schemas] 263 

[Definition:  NIEM-compatible constraint schema] 264 

[Definition:  NIEM-conformant instance] 265 

[Definition:  NIEM Conformant Namespace] 266 

[Definition:  NIEM Compatible] 267 

[Definition:  Placeholder Schema] 268 

[Definition:  Documentation Schema] 269 

[Definition:  Extension Schema] 270 

[Definition:  Code Table] 271 

[Definition:  Reference Element] 272 

[Definition:  Fundamental Element] 273 

 274 

[Definition:  NIEM-conformant schema] 275 

The term NIEM-conformant schema SHALL be defined as an XML Schema that complies with the rules 276 
for NIEM-conformant schemas as defined by this specification. 277 

Rationale 278 

This specification is primarily concerned with defining a particular type of schema that is designed to 279 
match the numerous requirements and principles specified in Section 3: Guiding Principles.   280 

[Definition:  NIEM-conformant reference schema] 281 

The term NIEM-conformant reference schema SHALL be defined as an XML Schema that complies with 282 
the rules for NIEM-conformant reference schemas as defined by this specification. 283 

Rationale 284 

This specification separates reference schemas from non-reference schemas.  Reference schemas are 285 
the fully-documented forms of schemas that contain all available content, to the largest available 286 
cardinality.   287 

These reference schemas may act as the basis for subset schemas, which are not reference schemas, and which 288 
may apply certain constraints, restrictions, and narrowing of scope to the reference schema. 289 

Also included in this specification is the concept of constraint schemas.  Constraint schemas act in tandem with 290 
the reference schemas, and act to restrict content specified by the reference schemas.  Constraint schemas need 291 
not be NIEM-conformant, as the content on which they act must also validate against conformant schemas.  Such 292 
validation may be performed in stages, in agreement with the principle of multiple-pass validation. 293 

[Definition NIEM-conformant instance] 294 

A NIEM-conformant instance is a document or data set that satisfies the rules for NIEM-conformant 295 
instances as specified in this document. 296 
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Rationale 297 

3. XML data may be referred to as a NIEM-conformant 298 

instance if it conforms to this specification299 
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3. Guiding Principles 300 

Principles in this specification provide a foundation and explanations for the rules.  The principles are not 301 
operationally enforceable. The rules are the normative and enforceable manifestation of the principles.  302 

3.1. Specification Principles 303 

Principles regarding what to specify, and what this document covers. 304 

3.1.1. Minimal Specification 305 

This specification should state what is required for interoperability, not all that could be specified.  Certain 306 
decisions (such as normative XML comments) could create roadblocks for interoperability, making heavy 307 
demands on systems for very little gain.  The goal is not standardization for standardization’s sake.  The goal is to 308 
maximize interoperability and reuse. 309 

[Principle 1] 310 

This specification should specify what is necessary for interoperability, and no more. 311 

3.1.2. Schema-Level Specification 312 

This specification should try, as much as is possible, to specify schema-level content.  This is a specification for 313 
schemas, and so should specify schemas.  It should avoid specifying complex data models, or data dictionaries.   314 

[Principle 2] 315 

This specification should focus on providing rules for specifying schemas. 316 

3.1.3. Specificity and Conciseness 317 

A rule should be as precise and specific as possible, to avoid broad, hard-to-modify rules.  Putting multiple 318 
clauses in a rule makes it harder to modify.  Using separate rules allows specifics conditions to be clearly stated. 319 

[Principle 3] 320 

This specification should feature rules which are as specific, precise, and concise as possible. 321 

3.2. Data Model Principles 322 

The definition of the data model follows numerous guidelines.  It is based upon actual data requirements gathered 323 
from a large number of exchanges in the justice domain, as well as a need to regularize data definitions to make 324 
them understandable and implementable. 325 

[Principle 4] 326 

NIEM schemas and data instances are constructed in such a way as to maintain consistency of its 327 
fundamental data model. 328 

3.2.1. RDF Data Model 329 

The NIEM data model is defined with the RDF data model at its core.  The rules specified in this document ensure 330 
that NIEM-conformant XML instances preserve the Subject-Property-Object triplets defined by RDF.  This support 331 
will allow for leveraging of Semantic Web and other higher-level understanding of data. 332 

[Principle 5] 333 

The NIEM data model follows the Subject-Property-Object data model defined by RDF. 334 

The RDF data model is defined by [RDFConcepts]. 335 
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3.2.2. Specialization of Types 336 

The NIEM embraces the fundamental concept of specialization of types.  Through specialization, general 337 
concepts are made more precise for specific cases.  Specialization of types involves the creation of new types by 338 
extending or restricting existing types. 339 

[Principle 6] 340 

Types are specialized through the use of derived types 341 

3.2.3. Specialization of Properties 342 

The specialization of properties involves basing narrow concepts on general concepts.  Properties are described 343 
by [RDFConcepts] as characteristics or relationships.  We represent them in XML as elements and attributes. 344 

[Principle 7] 345 

Properties are specialized through the use of derived properties 346 

3.3. Principles in the use of XML 347 

There are numerous methods and best practices for the use of XML. 348 

3.3.1. Invariant Content 349 

XML Schema has constructs that can make the data provided by XML processors different before and after 350 
schema processing.  A sample of this is the use of attributes with default values.  Before processing, there may be 351 
no attribute value, but after processing, the attribute value exists.   352 

Within the NIEM, the process of validation of instances against schemas is solely validation:  testing that data 353 
instances match desired constraints and guidelines.  It should not be used to change the content of data 354 
instances. 355 

[Principle 8] 356 

The content of a data instance must not be modified by processing against schemas.  357 

3.3.2. XML Schema for Validation 358 

The NIEM is designed for W3C XML Schema validation.  A primary goal is to maximize the amount of validation 359 
that may be performed by XML Schema validating parsers.   360 

[Principle 10] 361 

The NIEM should depend on W3C XML Schema validating parsers for validation of XML content. 362 

XSD validates content using content models: descriptions of what elements and attributes may be contained 363 
within an element and what values are allowable.  Mechanisms involving linking using attribute and element 364 
values are useful, but should only be relied upon when absolutely necessary. 365 

3.3.3. Minimal implementation requirements 366 

The NIEM is intended to be an open specification, supported by many diverse implementations.  It was designed 367 
from data requirements and not from or for any particular system or implementation.  Use of the NIEM should not 368 
depend on specific software, other than XML Schema validating parsers. 369 

[Principle 11] 370 

The NIEM should not depend on specific software packages, frameworks, or systems for interpretation of 371 
XML instances. 372 

Similarly, the NIEM should be implementable with commercial off-the-shelf and free software products. 373 
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[Principle 12] 374 

The NIEM should be implementable with a variety of commercial off-the-shelf and free software products. 375 

3.3.4. Reference Schema Defines Namespace Contents 376 

The NIEM uses the concept of a reference schema, which defines the structure and content of a namespace.  For 377 
each NIEM-conformant namespace, there is exactly one reference schema.  A user may use a subset schema 378 
(q.v.) for a reference schema, but all instances must validate against a single reference schema for each 379 
namespace. 380 

[Principle 13]  381 

Each NIEM-conformant namespace will be defined by exactly one reference schema. 382 

3.3.5. Reuse of Namespaces 383 

The NIEM is designed to maximize reuse of namespaces and the schemas that define them.  When referring to a 384 
concept defined by the NIEM, users should ensure that instances and schemas refer to the namespace defined 385 
by the NIEM.  User-defined namespaces should be used for specializations and extension of NIEM constructs, 386 
but should not be used when the NIEM structures are sufficient. 387 

[Principle 14] 388 

NIEM-conformant instances and schemas should reuse the NIEM namespaces when possible. 389 

Reuse is by reference to the namespace, with validation against reference schemas or reference subset 390 
schemas. 391 

3.3.6. Specific Typing 392 

As soon as an application has determined the name and namespace of an attribute or element used in NIEM-393 
conformant instances, it will also know the type of that attribute or element.  NIEM does not employ anonymous 394 
typing.  395 

[Principle 15] 396 

Each attribute and element within the NIEM has a defined type.   397 

3.3.7. Avoidance of Wildcards 398 

Wildcards in schemas work in opposition to standardization.  The effort of creating harmonized, standard 399 
schemas is to standardize a set of data.  Wildcards allow non-standard data to be passed in otherwise standard 400 
messages.  As such, users may receive non-standard data, and users may not be encouraged to extend in such a 401 
way that extensions may be distinguished from standardized content. 402 

[Principle 16] 403 

Wildcards in standard schemas should be avoided 404 

3.3.8. Schema Location as a Hint 405 

[XMLSchemaStructures] specifies schemaLocation, an attribute of the xsd:import element of a schema, 406 
the xsi:schemaLocation, and xsi:noNamespaceSchemaLocation attributes of XML instances.  In both of 407 
these uses, the specification explicitly maintains that the schema location specified is a hint, which may be 408 
overridden by applications.  For example, from [XMLSchemaStructures]:  409 

The actual value of the schemaLocation, if present, gives a hint as to where a serialization of a schema 410 
document with declarations and definitions for that namespace (or none) may be found. 411 
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[Principle 17] 412 

Schema locations specified within NIEM-conformant reference schemas are hints, to provide default 413 
values to processing applications. 414 

3.3.9. Multi-pass Validation 415 

Systems that operate on XML data have the opportunity to perform multiple layers of processing.  Data may be 416 
processed by middleware, XML libraries, XML Schemas, and application software. 417 

[Principle 18] 418 

The primary purpose of XML Schema validation is to restrict processed data to that data that conforms to 419 
agreed-upon rules.  This restriction is achieved by marking as invalid that data that does not conform to 420 
the rules defined by the schema. 421 

The NIEM does not attempt to create a one-size-fits-all schema, to perform all validation.  Instead, it creates a set 422 
of reference schemas, on which additional constraints may be placed.  It also does not focus on language-binding 423 
XML Schema implementations, which convert XSD definitions into working programs.  It is, instead, focused on 424 
normalizing language and preserving the meaning of data. 425 

[Principle 19] 426 

Constraints on XML instances MAY be validated by multiple schema validation passes, using multiple 427 
schemas for a single namespace. 428 

3.3.10. No Mixed Content 429 

When validating XML instance data against W3C XML Schemas, mixed content is very difficult to constrain.  430 
Instances that use mixed content are difficult to specify, and complicate the task of data processing.  Much of the 431 
payload carried by mixed content is unchecked, and does not facilitate data standardization or validation.   432 

[Principle 20] 433 

NIEM-conformant schemas do not specify data that uses mixed content. 434 

3.3.11. Application versus User Information 435 

[Principle 21] 436 

XML data is primarily intended for automatic processing, not for human consumption. 437 

XML should be made human-understandable whenever possible, but it is not targeted at human consumers.  XML 438 
Schema is intended for validators and automatic processing.  HTML is intended for browsers.  Browsers and 439 
similar technology provide human interfaces to XML and other structured content.  As such, structured XML 440 
content does not belong in places targeted towards human consumption.  Human-targeted information should be 441 
of a form suitable for presentation. 442 

3.3.12. Design for Extensibility 443 

The NIEM is designed to be extended.  Numerous methods are considered acceptable in creating extended and 444 
specialized components.   445 

[Principle 22] 446 

The NIEM is intended for extension and augmentation by users and developers outside the 447 
standardization process.   448 
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4. Relation to Standards 449 

The NIEM uses many public standards, and is influenced by many others.  This section specifies to what 450 
specifications the NIEM conforms, and the specific rationale for differences from public standards. 451 

4.1. XML 1.0 452 

Artifacts of NIEM conform to the most recent recommendation for XML. 453 

[Rule STA1] 454 

NIEM-conformant schemas MUST conform to XML as specified by [XML]. 455 

4.1.1. XML Comments 456 

XML Comments are not schema constructs and are not specifically associated with any schema-based 457 
components.  As such, comments are not considered semantically meaningful by NIEM, and may not be retained 458 
through processing of NIEM schemas. 459 

[Rule STR18] 460 

XML comments shall not be used for meaningful information about constructs within XML Schemas. 461 

Rationale 462 

Since XML comments are not associated with any specific XML Schema construct, there is no standard 463 
way to interpret comments.  As such, comments should be reserved for internal use, and XML Schema 464 
annotations should be preferred for meaningful information about components. 465 

4.2. XML Namespaces 466 

[Rule STA2] 467 

NIEM-conformant schemas MUST conform to the specification for namespaces in XML, as defined by 468 
[XMLNamespaces] and [XMLNamespacesErrata]. 469 

4.3. XML Schema 470 

The W3C XML Schema definition language has become the generally accepted schema language that is 471 
experiencing the most widespread adoption. Although other schema languages exist that offer their own 472 
advantages and disadvantages, the best approach is to base NIEM on W3C XML Schema.  473 

[Rule STA3] 474 

All NIEM-conformant schemas MUST be based on the W3C XML Schema Recommendations: XML 475 
Schema Part 1: Structures and XML Schema Part 2: Datatypes, as specified by 476 
[XMLSchemaStructures] and [XMLSchemaDatatypes]. 477 

Rationale 478 

This document is to be the specification for schemas and instances, not a specification for the 479 
specification itself.  Those go in principles. 480 

4.4. ISO 11179 481 

4.4.1. ISO 11179, Part 4 482 

4.4.1.1. Formulation of data definitions 483 

The ISO 11179, Part 4, standard provides structure and rules for defining data definitions.  The NIEM uses this 484 
standard with respect to summary definitions.   485 
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[Rule STA5] 486 

Within a NIEM-conformant schema, each XML element, attribute, and type definition SHALL follow the 487 
rules and recommendations of formulating data definitions given by ISO 11179, Part 4. 488 

Rationale 489 

To advance the goal of creating semantically-rich NIEM conformant schemas, it is necessary that data 490 
definitions be descriptive and meaningful. 491 

Note that NIEM definitions may contain extensive details about an XML element, attribute, or type, including such 492 
things as a rationale, examples, and domain-specific usages.  493 

4.4.2. ISO 11179, Part 5 494 

The ISO 11179, Part 5, standard provides a structure and rules for naming data elements.  The NIEM uses this 495 
standard, with some specific refinements. 496 

4.4.2.1. Object Class 497 

In the NIEM, the object class that constitutes the first part of an entity name is interpreted as a real-world object 498 
class.  That is, the object class term should reflect the real-world object classes and not specific data classes.  It 499 
represents a real-world object rather than simply a collection of data. 500 

4.4.2.2. Representation Terms 501 

ISO 11179 part 5 requires the use of representation terms for data classes.  The NIEM uses a specific set of 502 
representation terms. 503 

[Rule GNR1] 504 

Each XML element, attribute, and type defined by NIEM-conformant schemas SHALL use a 505 
representation term from Table 2: Representation Terms  unless the XML elements are of types with 506 
complex content. 507 

Rationale 508 

A representation term defines the kind of value that is to be expected from the element.  It is not needed 509 
for elements that are of types with complex content because they are comprised of other elements.  510 
There is no single kind of value to be expected within an element of complex content.    511 

4.4.2.2.1. Types 512 

[Rule GNR2] 513 

NIEM-conformant schemas SHALL use the representation term "Type" in the name of each non-514 
enumerated XML Schema type. 515 

Rationale 516 

Using the representation term "Type" immediately identifies XML types in a NIEM-conformant schema 517 
and prevents naming collisions with corresponding XML elements and attributes. 518 

4.4.2.2.2. Simple Types 519 

[Rule GNR10] 520 

The representation term "SimpleType" shall be used in the name of each XML Schema simple type. 521 

Rationale 522 

Schemas are more comprehensible when referenced structures may be easily identified.  Specific uses of 523 
simple types and complex types have similar syntax, but very different effects on data definitions.  524 
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Schemas that clearly identify complex types and simple types are easier to understand without tool 525 
support. 526 

4.4.2.2.3. Code Types 527 

[Rule GNR3] 528 

NIEM-conformant schemas SHALL use the representation term “CodeType” in the name of each XML 529 
Schema type which: 530 

1. is a complex type 531 

2. has simple content, where 532 

3. its simple content is an enumerated XML Schema type. 533 

Rationale 534 

Using the representation term "CodeType" immediately identifies XML Schema types in a NIEM-535 
conformant schema that define code sets and prevents naming collisions with corresponding XML 536 
elements and attributes. 537 

Table 2: Representation Terms 538 
Representation Term Definition 

Amount A number of monetary units specified in a 
currency where the unit of currency is 
explicit or implied. 

BinaryObject A set of finite-length sequences of binary 
octets. 

Graphic A diagram, graph, mathematical curves, or 
similar representation 

Picture A visual representation of a person, object, 
or scene 

Sound A representation for audio 

Video A motion picture representation; may 
include audio encoded within 

Code A character string (letters, figures or 
symbols) that for brevity, language 
independence, or precision, represents a 
definitive value of an attribute. 

CodeText A character string for which data values 
are codes but are not validated by the 
schema because there is no 
corresponding enumerated type present. 

DateTime1 A particular point in the progression of time 
together with relevant supplementary 
information. 

Date A particular day, month, and year in the 
Gregorian calendar. 

Time A particular point in the progression of time 
within an unspecified 24 hour day. 

                                                      
1 DateTime is not actually used in the NIEM reference distribution schema, but is available for use. 



   

 
NIEM NDR Page 18 of 81 
Draft Version 0.3  
September 30, 2006  

Representation Term Definition 

DescriptionText A character string that is a description of a 
value, not the actual value itself. 

Identifier2 A character string to identify and 
distinguish uniquely, one instance of an 
object in an identification scheme from all 
other objects in the same scheme together 
with relevant supplementary information. 

Indicator A list of two mutually exclusive Boolean 
values that express the only possible 
states of a Property. 

Measure A numeric value determined by measuring 
an object along with the specified unit of 
measure. 

Numeric Numeric information that is assigned or is 
determined by calculation, counting, or 
sequencing. It does not require a unit of 
quantity or unit of measure. 

Value A result of a calculation 

Rate A representation of a ratio where the two 
units are not included. 

Percent A representation of a ratio in which the two 
units are the same.  

Quantity A counted number of non-monetary units 
possibly including fractions. 

Text A character string (i.e. a finite sequence of 
characters) generally in the form of words 
of a language. 

Name A word or phrase that constitutes the 
distinctive designation of a person, place, 
thing or concept.  

Type The expression of the aggregation of 
properties to indicate the aggregation of 
lower leveled information entities.  All Type 
names use this Representation Term 

                                                      
2 "ID" (the abbreviation) is preferred over the full term "Identifier".  It is indicated in the table of abbreviations. 
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5. Naming Rules 539 

5.1. Usage of English 540 

The English language has many spelling variations for the same word. For example, American English “program” 541 
has a corresponding British spelling “programme.” This variation has the potential to cause interoperability 542 
problems when exchanging XML components because of the different names used by the same elements. 543 
Providing a dictionary standard for spelling will mitigate this potential interoperability issue.  544 

[Rule GNR4] 545 

NIEM information exchange XML elements, attributes and type names MUST be composed of words from 546 
the English language, using the prevalent U.S. spelling, as provided by the Oxford English Dictionary, 547 
Second Edition, 1989. 548 

5.2. Characters in Names 549 

[Rule GNR5] 550 

NIEM information exchange XML element, attribute and type names SHALL use only the characters from 551 
, in accordance with the use specified in that table. 552 

Names of entities within the NIEM follow the rules of W3C XML Schema, by rule [Rule STA3].  Entities also must 553 
follow the rules specified for each type of XML Schema entity. 554 

Table 3: Characters Allowed in Names 555 
Character Title Character Literal Use 
Letters  The first character of a name 

SHALL be a letter. 
Uppercase letters 'A'-'Z' The first character of the 

name of a type or an element 
SHALL be an uppercase letter 

Lowercase letters 'a'-'z' The first character of the 
name of an attribute SHALL 
be a lowercase letter 

Digits '0'-'9' Digits SHALL NOT be used to 
enumerate.  They may be 
used to specify a specific 
concept or standard. 

Underscore '_' Underscores SHALL NOT be 
used in NIEM entity names 

Hyphen '-' Hyphens may be used in the 
Representation Qualification 
Suffix portion of an element 
name 

Period '.' Periods may be used to 
separate a property name 
from its Representation 
Qualification Suffix. 

5.3. Use of Acronyms and Abbreviations 556 

Acronyms and abbreviations can obscure meaning, and impair understanding and interoperability.  They should 557 
be used with great care.  Acronyms and abbreviations that are used must be documented, and used consistently. 558 
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[Rule GNR6] 559 

A NIEM-conformant schema MUST consistently use approved acronyms, abbreviations, and word 560 
truncations within defined names.  The approved shortened forms are defined in Appendix B: Normative 561 
Abbreviations. 562 

Other acronyms and abbreviations will be used on a per-schema basis.  Such abbreviations must be properly 563 
documented within the schema documentation. 564 

[Rule DOC1] 565 

[NIEM 3.1 CHANGE] A NIEM-conformant schema MUST specify ALL acronyms, abbreviations, and 566 
other word truncations within NIEM-conformant schema notation. 567 

5.4. Singular and Plural Forms 568 

 [Rule GNR7] 569 

Within NIEM-conformant schemas, element, attribute and type names MUST be in singular form unless 570 
the concept itself is plural. 571 

The following is an example of correct name use:  572 

PersonPhysicalFeature, PhysicalFeatureType 573 
PersonPhysicalDetails, PersonPhysicalDetailsType 574 
personNameInitialIndicator  575 

5.5. Character Case 576 

 [Rule GNR8] 577 

The upper camel case convention SHALL be used for naming elements and types. 578 

Rationale 579 

The use of upper camel case for names of types has become a defacto standard, to which NIEM 580 
conforms. 581 

Examples of upper camel case names:  582 

PersonName  583 
JewelryStone  584 

[Rule GNR9] 585 

The names of attributes defined within NIEM-conformant schemas SHALL be formatted in lower camel 586 
case. 587 

Examples of lower camel case names:  588 

amountCurrencyCodeListVersionID  589 
characterSetCode 590 
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6. Normalized Structure Design Rules 591 

The NIEM enforces a regular structure on XML instances.  NIEM provides a specific schema which contains base 592 
types for types in NIEM-conformant schemas.  It provides base elements to act as heads for substitution groups.  593 
It also provides attributes that provide facilities not otherwise provided by XML Schema.  594 

6.1. Structures Namespace 595 

The NIEM provides a namespace containing structures for organizing data.  These structures should be used to 596 
augment XML data.  The structures provided are not meant to replace fundamental XML organization methods; 597 
they are intended to assist them. 598 

[Rule STR2] 599 

The NIEM structures namespace shall be represented by the URI 600 
"http://niem.gov/niem/structures/1.0".   601 

Rationale 602 

The structures namespace is a single namespace, separate from namespaces that define NIEM-603 
conformant data.  This document refers to this content via the prefix structures. 604 

[Rule STR3] 605 

NIEM-conformant schemas and instances SHALL NOT use content within the NIEM structures 606 
namespace except as specified by this document. 607 

Rationale 608 

It is an error to insert into the NIEM structures namespace types, elements, attributes, etc., that are not 609 
specified by this document.   610 

6.1.1. Sequence ID 611 

The attribute structures:sequenceID is provided to allow specification of sequential order of instances, when 612 
a complex type's defined element sequence is insufficient.  A limitiation of XML Schema is that control of 613 
cardinality (the number of times an element may occur in an instance) requires the use of sequences of elements.  614 
This use of xsd:sequence defines the elements occurring within a type in a specific order.  This order may not 615 
match the desired sequential order of the represented entities. 616 

 An example would be for proper names, where the natural order of the names may not appear in the same order 617 
as the sequence defined by a complex type.  For example, some naming patterns have the family name as the 618 
last name of a person, while others have family name first, and others in the middle.  Without a method for 619 
concretely define the desired sequence of the parts of a name, such data will be misrepresented in an XML 620 
instance. 621 

The sequenceID attribute allows instances to express the sequential order of data relative to a parent.  The 622 
order of data is as yielded by XSLT's sort element, with data-type of "number", and order of "ascending".  Content 623 
with identical sequenceID values has undefined order.   624 

[Rule STR4] 625 

The order of elements that are children of a NIEM-conformant element shall be presented as if their 626 
sequential order is as follows: 627 

1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded 628 
with their sequence IDs sorted via XSLT's sort element, with a data type of "number" and an order of 629 
"ascending". 630 

2. Following those elements, the remaining elements, in the order in which they occur within the XML 631 
instance. 632 
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Rationale 633 

Because of NIEM's use of structured, defined types, and its use of sequence, as well as various 634 
representation mechanisms, the order of data within an XML instance may require more precise 635 
definition.  The true order of objects (such as parts of a name, or lines in an address, or parts of a phone 636 
number) may need an explicit method to define their order.   637 

In this definition, the term "presented" may mean presentation to the user, reports, or transfer to other 638 
data systems.   639 

[Rule STR6] 640 

Within NIEM-conformant schemas and instances, the attribute structures:sequenceID SHALL NOT 641 
be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings. 642 

Rationale 643 

Siblings of a data item are items that have the same parent.  Note that, using the reference and 644 
relationships mechanisms, data objects may have multiple parents.  The sequenceID is truly metadata, 645 
helping to express the structure of the data, rather than its content. 646 

Note that reference elements have the same semantics as concrete data elements, and so follow the same rules 647 
for sequential order.  By using reference elements, an entity may have one order within one structure, and 648 
another order within another structure. 649 

Within NIEM-conformant schemas, the order of objects SHALL be given by sorting the objects by numerical value 650 
of their respective attribute structures:sequenceID, from smallest to highest.  The relative order of objects 651 
with equal values for structures:sequenceID is their order within the XML instance.  The order of objects with 652 
no value for structures:sequenceID is after all objects that have values for structures:sequenceID, in 653 
their relative order within the XML instance.is undefined. 654 

6.1.2. References 655 

In XML instances, the primary method of expressing relationships between data objects is by: 656 

1. expressing the data objects as XML elements, and 657 

2. having one element contain other elements 658 

In this way, there is generally some implicit relationship between the outer element (the "containing" element, 659 
a.k.a. the parent element) and the inner elements (the "contained" elements, a.k.a. the child elements).  Such 660 
expression of relationships is said to be by containment. 661 

Expression of all relationships via element containment is not always possible.  Situations that cause problems 662 
include: 663 

• Circular relationships 664 

For example, if we say "Object1 has a relationship to Object2" and "Object2 has a relationship to 665 
Object1".  Expressed via containment, this would result in infinite recursive descent. 666 

• Repeated relationships 667 

For example, if we say "Object1 has a relationship to Object2" and "Object3 has a relationship to 668 
Object2".  Expressed via containment, this would result in a duplicate of Object2. 669 

A method that solves this problem is to use references.  In a C or assembler, a pointer would be used.  In C++, a 670 
reference might be used.  In java, a reference value might be used.  The method defined by the XML standard is 671 
the use of ID and IDREF.  An ID refers to an IDREF.  This is the method used by NIEM. 672 

 [Rule STR8] 673 

Within a NIEM-conformant schema, a reference element is an element defined with a name of the form 674 

NCName "Reference" 675 
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Where NCName is as defined by [XMLNamespaces]. 676 

Rationale 677 

Reference elements allow XML data to break free of the hierarchical data model, allowing reuse of data 678 
objects.   679 

[Rule STR9] 680 

Within a NIEM-conformant schema, a reference element SHALL be defined to be of type 681 
structures:ReferenceType.  Any element of this type must be a reference element. 682 

Rationale 683 

Reference elements must be of the reference type, and elements of the reference type must be reference 684 
elements. 685 

[Rule STR10] 686 

Within a NIEM-conformant schema, element of the form 687 

NCName1 688 

and of the form 689 

NCName1 "Reference" 690 

(where the value of NCName1 is the same between the two forms) shall be defined to have identical 691 
semantics.  The NIEM recognizes no difference in meaning between a reference element and an element 692 
that is not a reference element. 693 

 Rationale 694 

NIEM-conformant data instances may use concrete data elements and reference elements as needed, to 695 
represent the meaning of the fundamental data.  There is no implied difference in meaning between 696 
reference or concrete data representations.  The two different methods are available for ease of 697 
representation.  No change in meaning should be implied by the use of one method or the other. 698 

Some parties assert that "included" data is intrinsic, while referenced elements are intrinsic.  As applied to 699 
NIEM-conformant data, such assertions are in error. 700 

 [Rule STR13] 701 

Within NIEM-conformant schemas, an element defined with a name not of the form defined in  [Rule 702 
STR8] SHALL NOT be of type structures:ReferenceType. 703 

Rationale 704 

If an element is not named to be a reference element, then it may not be of reference type.  Only 705 
reference elements may be of reference type. 706 

The NIEM schemas define structures:ReferenceType to require the use of an attribute 707 
structures:reference, which is of type IDREF as specified by [XML].  According to the rules of XML, such 708 
an attribute must contain a value that is represented by an attribute of type ID.  In NIEM-conformant instance, the 709 
targets of IDREFs are expected to be values of the attribute structures:id. 710 

The NIEM schemas define structures:ReferenceType such that it is unavailable as a base for extension or 711 
restriction. 712 

The NIEM schemas define structures:ReferenceType such that it has an optional attribute 713 
structures:id.  This may be used to describe additional metadata or information about the relationship 714 
described by an element of type structures:ReferenceType. 715 

 [Rule STR16] 716 

Within a NIEM-conformant instance, an element of type structures:ReferenceType MAY contain an 717 
occurrence of attribute xml:id. 718 
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Within a NIEM-conformant instance, the element referred to by an attribute structures:reference MUST be 719 
of a type valid for the object of the fundamental element of the reference element.  This property is described by 720 
rules in the relevant sections. 721 
 722 
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7. General Schema Design Rules 724 

The W3C XML Schema language provides many redundant features that allow a developer to represent a logical 725 
data model many different ways. Heterogeneous data models can become an interoperability problem in the 726 
absence of a comprehensive set of naming, definition, and declaration design rules.  727 

This section establishes rules for XML schema elements, attributes, and type creation. Because the W3C XML 728 
specifications are flexible, comprehensive rules are needed to achieve a balance between establishing uniform 729 
schema design while still providing developers flexibility across the Justice and Public Safety domain. 730 

7.1. Mixed Content 732 

[Rule CTD1] 733 

The value of the attribute mixed within an element xsd:complexType or xsd:complexContent shall 734 
not have the value "true". 735 

Rationale 736 

A NIEM-conformant schema does not define mixed content.  NIEM does not support mixed content in 737 
XML elements.  Exchange documents containing mixed content are difficult to process, define, and 738 
constrain. 739 

External schemas may include mixed content, and may be used with NIEM via external adapter typs and external 740 
container elements. 741 

7.2. Notations 742 

Notations are not supported by the NIEM.  Notations allow the attachment of system and public identifiers on 743 
fields of data.   744 

[Rule GXS3] 745 

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:notation. 746 

Rationale 747 

The notation mechanism is not supported by NIEM.  The xsd:notation element defines a notation on a 748 
field of data. 749 

[Rule GXS4] 750 

NIEM-conformant schemas SHALL NOT contain a reference to the type xsd:notation, or to a type 751 
derived from that type. 752 

Rationale 753 

The notation mechanism is not supported by NIEM.  The xsd:notation type defines a field to which system 754 
and public identifiers may be applied. 755 

7.3. Schema Document Element 756 

The features of W3C XML Schema allow for flexibility of use for many different and varied types of 757 
implementation. The NIEM NDR requires consistent use of these features.  The document element of a schema is 758 
xsd:schema. 759 

[Rule GXS18] 760 

In a NIEM-conformant schema, any occurrence of the element xsd:schema MUST own an attribute 761 
targetNamespace.  The value of the attribute MUST match the production <absolute-URI> as 762 
defined by [RFC3986]. 763 
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Rationale 764 

Schemas without defined namespaces provide definitions that are ambiguous, in that they are not 765 
universally identifiable.   766 

Absolute URIs are the only universally meaningful URIs.  Finding the target namespace using XML Base 767 
is overly complicated, and not specified by XSD.  Relative URIs aren't universally identifiable, as they are 768 
context-specific. 769 

The xsd:schema element contains an optional attribute attributeFormDefault.  The value of this attribute is 770 
immaterial to a NIEM-conformant schema, as each attribute defined by a NIEM-conformant schema must be 771 
defined at the top-level, and so must be qualified with the target namespace of its declaration. 772 

The xsd:schema element contains an optional attribute elementFormDefault.  The value of this attribute is 773 
immaterial to a NIEM-conformant schema, as each element defined by a NIEM-conformant schema must be 774 
defined at the top-level, and so must be qualified with the target namespace of its declaration. 775 

 [Rule GXS21]  776 

In a NIEM-conformant schema, the element xsd:schema must own an attribute version, which must 777 
have a non-empty value. 778 

Rationale 779 

It is very useful to be able to tell one version of a schema from another.  Apart from the use of 780 
namespaces for versioning, it is sometimes necessary to release multiple versions of schema documents.  781 
Such use might include: 782 

• Subset schemas 783 
• Error corrections or bug-fixes 784 
• Documentation changes 785 
• Contact information updates 786 

In such cases, a different value for the version attribute implies a different version of the schema.  No 787 
specific meaning is assigned to specific version identifiers.  788 

7.4. Top-Level Constructs 789 

Top-level constructs of a schema are those definitions which occur just below the xsd:schema element.  This 790 
section considers such constructs that do not merit their own section.  791 

7.4.1. Element xsd:include 792 

Element xsd:include brings schemas defined in separate files into the current namespace.  Its use can create 793 
difficulties with schema reuse, and increases the likelihood of conflicting definitions. 794 

[Rule GXS9] 795 

A NIEM-conformant schema MUST NOT contain the element xsd:include. 796 

Rationale 797 

Inclusion of namespaced schemas violates the principle that a single reference schema defines a 798 
namespace.  It breaks a namespace up into arbitrary partial schemas, which needlessly complicates the 799 
schema structure.  Inclusion of unnamespaced schemas complicates schema understanding as well, 800 
making it difficult to find the realization of a specific schema artifact. 801 

7.4.2. Element xsd:redefine 802 

The xsd:redefine element allows a schema to restrict and extend components from a namespace in that 803 
namespace.  As described by [XMLSCHEMA-1]: 804 
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The definitions within the <redefine> element itself are restricted to be redefinitions of components from 805 
the <redefine>d schema document, in terms of themselves. That is, 806 

• Type definitions must use themselves as their base type definition; 807 
• Attribute group definitions and model group definitions must be supersets or subsets of their original 808 

definitions, either by including exactly one reference to themselves or by containing only (possibly 809 
restricted) components which appear in a corresponding way in their <redefine>d selves. 810 

Such redefinition introduces duplication of definitions, as multiple definitions exist for components from a single 811 
namespace.   812 

[Rule GXS10] 813 

A NIEM-conformant schema MUST NOT contain the element xsd:redefine. 814 

Rationale 815 

Use of redefine provides an alternative definition for the contents of a namespace, in violation of the 816 
principle that a single reference schema defines a NIEM-conformant namespace. 817 

7.5. Import of Namespaces 818 

Namespaces used by a NIEM-conformant schema must be imported using the xsd:import element, in 819 
compliance with the XML Schema specification.  Importing of namespaces is performed via the xsd:import 820 
element, which appears as an immediate child of the xsd:schema element. 821 

[Rule GXS11] 822 

Within a NIEM-conformant schema, any occurrence of the element xsd:import MUST own the attribute 823 
namespace.  The value of the attribute MUST match the production <absolute-URI> as defined by 824 
[RFC3986]. 825 

Rationale 826 

An import that does not specify a namespace is enabling reference to non-namespaced components.  827 
NIEM requires that all components have a defined namespace.  It is important that the namespace 828 
declared by a schema be universally defined, and unambiguous.  XML Base processing is not specified 829 
by XML Schema, and so is not supported here. 830 

[Rule GXS13] 831 

Within a NIEM-conformant schema, any occurrence of the element xsd:import which imports a NIEM-832 
conformant schema MUST own the attribute schemaLocation. 833 

Rationale 834 

An import that does not specify a schema location gives no clue to processing applications as to where to 835 
find an implementation of the namespace.  Even though such a provided schema location may be 836 
overridden, it is important that an initial default be provided for processing. 837 

[Rule GXS14] 838 

In a NIEM-conformant schema, the value of any occurrence of the attribute schemaLocation owned by 839 
an element xsd:import MUST match either the production <absolute-URI>, or the definition of 840 
"relative-path reference", as defined by [RFC3986]. 841 

Rationale 842 

Default schemas must be provided for processing.  These may specified either as absolute or relative 843 
URIs.  Since URNs are not resolvable, they are inappropriate for use in schemaLocation.  The 844 
requirement for conformance to "relative-path reference" is required to avoid the more obscure syntax of 845 
"network-path reference" and the system-specific "absolute-path reference". 846 
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[Rule GXS15] 847 

In a NIEM-conformant schema, the value of any occurrence of the attribute schemaLocation owned by 848 
an element xsd:import MUST be resolvable to a XML schema document file that is valid according to 849 
[XMLSchemaStructures] and [XMLSchemaDatatypes]  850 

Rationale 851 

The object imported via xsd:import must be a schema document.  The XSD spec requires that the "author 852 
warrants" that this is the case.  This rule ensures that this is actually the case. 853 

7.5.1. Importing Non-conformant Namespaces 854 

Rules for schema locations are made more complicated by issues related to the importing of non-conformant 855 
namespaces.  These issues include: 856 

• NIEM may not redistribute the copyrighted work of others without permission 857 
• Many non-conformant namespaces have no authoritative schema 858 
• Many non-conformant namespaces have multiple schemas, representing different versions under the 859 

same namespace 860 
• Non-conformant namespaces disagree as to what version of other namespaces they require 861 

As a result of these issues, imports of non-conformant namespaces are not required to contain a 862 
schemaLocation attribute.  To make this testable, imports of non-conformant namespaces are required to 863 
contain an appinfo element indicating that the namespace is not conformant. 864 

[Rule GXS20] 865 

Any element xsd:import that does not import a NIEM-conformant namespace MUST contain an 866 
xsd:appinfo annotation of the following form: 867 

<appinfo:ConformantIndicator>false</appinfo:ConformantIndicator> 868 

Rationale 869 

This rule enables schema processors to determine if a namespace is conformant or not.  If an import 870 
claims that a namespace is conformant, it may be easily verified.  If the import indicates that the 871 
namespace is not conformant, the rules for non-conformant namespaces hold.  It is an error to indicate 872 
that a NIEM-conformant namespace is non-conformant. 873 

[Rule GXS16] 874 

Within a NIEM-conformant reference schema, any occurrence of the element xsd:import that imports a 875 
non-conformant schema MUST have as an immediate child an occurrence of the element 876 
xsd:annotation which has an immediate child element xsd:documentation.   877 

Rationale 878 

Reference schemas must be properly documented.  Conformant schemas are guaranteed to contain 879 
proper documentation and so need no additional documentation.  Non-conformant schemas must be 880 
documented at the point of import, because such schemas do not follow NIEM documentation rules. 881 

7.6. General Type Definitions 882 

Since NIEM document and extension schema elements and types are intended to be reusable, all types must be 883 
named. This permits other types to establish elements that reference these types, and also supports the use of 884 
extensions for the purposes of versioning and customization.   885 

The requirement that types be named is established by [Rule STD1 and [Rule CTD2]. 886 
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NIEM-conformant schemas may not use xsd:anyType, because this feature permits the introduction of potentially 887 
unknown types into an XML instance. NIEM intends that all constructs within the instance be described by the 888 
schemas describing that instance –   xsd:anyType tends to work counter to the requirements of interoperability. In 889 
consequence, particular attention is given to the need to enable meaningful validation of the NIEM document 890 
instances.  891 

[Rule GXS17] 892 

NIEM-conformant schemas SHALL NOT reference the type xsd:anyType. 893 

Rationale 894 

The type xsd:anyType provides a substantial wildcard by which untyped and unconstrained data may 895 
be carried.  This violates several NIEM principles. 896 

7.7. Simple Type Definitions 897 

[Rule STD1] 898 

Within a NIEM-conformant schema, any occurrence of the element xsd:simpleType MUST appear as 899 
an immediate child of the element xsd:schema. 900 

Rationale 901 

NIEM does not support anonymous / unnamed types in conformant schemas.  All "top-level" types are 902 
required by XSD to be named, and are therefore globally reusable. 903 

[Rule STD2] 904 

Within NIEM-conformant schemas, any occurrence of the element xsd:simpleType MUST have an 905 
occurrence of the element xsd:restriction as an immediate child. 906 

Rationale 907 

Any simple type must be a restriction of another type.  One alternative is "list", in which the resulting type 908 
is a list of entries, which should be structured via explicit XML, and not composed fields.  The other 909 
alternative is "union", which combines different-typed entries into a single type, obscuring meaning of 910 
instance values. 911 

[Rule STD3] 912 

Within a NIEM-conformant reference schema, any occurrence of the element xsd:simpleType MUST 913 
have an occurrence of the element xsd:annotation as an immediate child. 914 

Rationale 915 

Reference schemas must be properly documented.  916 

 [Rule STD4] 917 

Within a NIEM-conformant schema, any occurrence of the element xsd:restriction that is an 918 
immediate child of an element xsd:simpleType MUST contain an attribute base. 919 

Rationale 920 

All restrictions must restrict named types.  NIEM does not support anonymous types. 921 

Taking into account the other rules, this rule may be derivable, however, it is useful to have the point 922 
stand on its own. 923 

[Rule STD5] 924 

Within a NIEM-conformant schema, the value of the attribute base owned by an element 925 
xsd:restriction acting as part of a simple type declaration schema component MUST have a value 926 
that refers to a simple type defined by the XML Schema specification, or a simple type defined by a 927 
NIEM-conformant schema. 928 
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The content of the simple type definition then may add facets to the base simple type, in line with XSD 929 
specifications. 930 

[Rule STD6] 931 

Within a NIEM-conformant schema, the value of the attribute base owned by an element 932 
xsd:restriction acting as part of a simple type declaration schema component MUST NOT have a 933 
value that refers to xsd:anySimpleType 934 

Rationale 935 

xsd:anySimpleType is insufficiently constrained to provide a meaningful starting point for content 936 
definitions.   937 

7.8. Complex Type Definitions 938 

[Rule CTD2] 939 

Within NIEM-conformant schemas, any occurrence of the element xsd:complexType MUST appear as 940 
a child of the element xsd:schema. 941 

Rationale 942 

NIEM does not support anonymous / unnamed types in conformant schemas.  All "top-level" types are 943 
required by XSD to be named, and are therefore globally reusable. 944 

[Rule CTD3] 945 

Within NIEM-conformant schemas, an occurrence of the element xsd:complexType MUST NOT 946 
include the attribute mixed with a value of "true" or "1". 947 

Rationale 948 

NIEM does not support mixed content.   949 

NIEM supports use of attributes and attribute groups. 950 

7.8.1. Complex Content 951 

Within xsd:complexType, NIEM supports use of abstract, block, and final.  NIEM supports use of simple 952 
content, complex content, xsd:choice, groups, sequences, attributes, and attribute groups. 953 

[Rule CTD4] 954 

Within a NIEM-conformant schema, the element xsd:all SHALL NOT occur. 955 

Rationale 956 

NIEM does not support use of xsd:all.  Use of concretely-sequenced elements within complex types 957 
simplifies many types of processing, and allows reference schemas to act as a base for highly 958 
constrained, yet interoperable, subset schemas. 959 

[Rule CTD5] 960 

Within a NIEM-conformant schema, an occurrence of the element xsd:group acting as a particle 961 
schema component according to [XMLSchemaStructures] MUST have values of "1" for the attributes 962 
minOccurs and maxOccurs. 963 

Rationale 964 

Cardinality is restricted to maintain the simple-sequence compatibility of complex content.  NIEM does not 965 
permit complicated patterns of interlacing of elements.  Elements have a strict sequential occurrence.   966 

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 967 
expressed. 968 
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[Rule CTD6] 969 

Within a NIEM-conformant schema, an occurrence of the element xsd:choice MUST have values of "1" 970 
for the attribute minOccurs and maxOccurs.  This value may be implicit. 971 

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 972 
expressed. 973 

[Rule CTD7] 974 

Within a NIEM-conformant schema, an occurrence of the element xsd:sequence MUST have values of 975 
"1" for the attributes minOccurs and maxOccurs.  This value may be implicit. 976 

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 977 
expressed. 978 

[Rule CTD8] 979 

Within a NIEM-conformant schema, complex content SHALL NOT declare occurrences of a single 980 
element using more than one element statement.   981 

Rationale 982 

The goal here is simple sequences of elements.  Allowing multiple element statements for a single 983 
element creates situations where "Foo" is followed by "Bar" and again by "Foo", which puts structural and 984 
organizational constraints within the XML data file. 985 

[Rule CTD9] 986 

Within a NIEM-conformant schema, an element or attribute that is eliminated through restriction and 987 
reinserted by extension MUST conform to the original definition. 988 

Rationale 989 

The derived and extended content must maintain the "is-a" nature of derivation: Derived type "Foo" is-a 990 
base type "Bar".  Any constraints on "Bar" must be maintained in the derived type "Foo". 991 

7.8.2. Exclusion of Wildcards 992 

[Rule CTD10] 993 

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:anyAttribute. 994 

The element xsd:anyAttribute may appear within constraint schemas. 995 

[Rule CTD11] 996 

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:any. 997 

Rationale 998 

The elements xsd:anyAttribute and xsd:any provide wildcards, which may carry undefined content, in 999 
violation of the principle of avoidance of wildcards. 1000 

The element xsd:any may appear within constraint schemas. 1001 

7.9. Element Definitions 1002 

[Rule NEWRULE] 1003 

An element declaration schema component defined by a NIEM-conformant schema may have a type 1004 
attribute indicating a NIEM-conformant complex type. 1005 

[Rule NEWRULE] 1006 

An element declaration schema component defined by a NIEM-conformant schema may have an attribute 1007 
value of true and a type definition of the XML Schema ur-type. 1008 
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[Rule NEWRULE] 1009 

An element declara 1010 

7.10.  Element and Attribute Definitions 1011 

[Rule ATN1] 1012 

Each XML element and attribute name defined by the NIEM MUST correspond to a single representation 1013 
type. 1014 

Rationale 1015 

The name of a XML element or attribute from a NIEM-conformant schema should be concrete.  The 1016 
element or attribute name alone should be sufficient in determining not only the semantic meaning, but 1017 
also the type structure of that element or attribute. 1018 

7.10.1. Specific Typing 1019 

[Rule ATD1] 1020 

NIEM-conformant schemas SHALL NOT declare attributes or elements to be of type xsd:anyType or 1021 
xsd:anySimpleType,  1022 

Rationale 1023 

In accordance with the principle of avoidance of wildcards, NIEM schemas should not be able to pass 1024 
untyped content.  All content should have a comprehensible set of values that can be parsed.  The type 1025 
xsd:anyType allows untyped XML content to be carried as a payload.  The type xsd:anySimpleType 1026 
is a union of all possible simple types, and so provides no purposeful constraint on payload content. 1027 

7.11. Attribute Declarations 1028 

7.11.1. Global Attributes 1029 

The NIEM distribution features attributes that are common to all elements. These common attributes are declared 1030 
as attribute groups and utilize the following rule.  1031 

[Rule ATD2] 1032 

If a Schema Expression contains one or more common attributes that apply to all elements contained or 1033 
included or imported therein, the common attributes SHOULD be declared as part of a global attribute 1034 
group. 1035 

Rationale 1036 

For example: see the Global JXDM global attribute group named ”SuperTypeMetadata” 1037 

7.11.2.  Consistency of Attribute Content 1038 

[Rule ATD3] 1039 

NIEM-conformant schemas MUST NOT use the default attribute of the xsd:attribute element. 1040 

Rationale 1041 

The default attribute is used in conjunction with optional elements in attribute declarations.  It provides a 1042 
value for the attribute if the attribute does not appear.  Such values are yielded to XML instance 1043 
processing applications after schema validation occurs.  The use of this attribute causes data presented 1044 
to applications to be different than the data that appears in the instances themselves, in violation of the 1045 
principle of invariant content. 1046 
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[Rule ATD4] 1047 

NIEM-conformant schemas MUST NOT use the fixed attribute of the xsd:attribute element, 1048 
except when used in conjunction with the use attribute having the value "required". 1049 

Rationale 1050 

The fixed attribute is used to ensure that a used attribute always has a specific value.  When applied to 1051 
an optional element, it acts like the default attribute, changing the content of the attribute upon schema 1052 
validation.  Using it with required attributes ensures that valid content always has the specific value, while 1053 
allowing the pre- and post-validated content to be identical. 1054 
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8. Annotation Design Rules 1055 

All NIEM-conformant schemas must include documentation.  Some documentation is intended to be human 1056 
readable ("user information"), and other documentation is machine-readable ("application information").  These 1057 
terms come from [XMLSchemaStructures], a normative source. 1058 

[Rule DOC10] 1059 

The document element xsd:schema must follow the rules for documented components. 1060 

Rationale 1061 

A schema creates a new construct (a namespace), which must be documented.  Such documentation 1062 
describes the namespace as a whole. 1063 

[Rule DOC11[ 1064 

The document element xsd:schema must claim to be conformant using the appinfo element 1065 
i:ConformantIndicator. 1066 

The i:ConformantIndicator element is the method used by NIEM-conformant schemas to indicate that 1067 
they are, in fact NIEM-conformant. 1068 

 1069 

8.1. User Information ("documentation") Elements 1070 

[Rule DOC3] 1071 

Within NIEM-conformant schemas, the content of xsd:documentation elements SHALL NOT contain 1072 
structured XML data. 1073 

Rationale 1074 

According to the XSD specification the content of xsd:documentation elements is intended for human 1075 
consumption.  XML content is intended for machine consumption.  As such, any XML content appearing in 1076 
xsd:documentation should be in the context of human-targeted examples, and should be escaped using 1077 
&lt and &gt.   1078 

See [SchemaForXMLSchema], the schema for XML Schema, as an example. 1079 

[Rule DOC4] 1080 

The attribute xml:lang SHALL be used to indicate the language of user information in NIEM-1081 
conformant schemas. 1082 

Rationale 1083 

XSD spec indicates that user info should use xml:lang to indicate the language of the user info.  Note that 1084 
the value of xml:lang is inherited by child elements, so the attribute need not be owned directly by the 1085 
xsd:documentation element. 1086 

8.2. Application Information ("appinfo") Elements 1087 

[Rule DOC5] 1088 

An xsd:appinfo element SHALL contain well-formed XML data that conforms to [XMLNamespaces].   1089 

Rationale 1090 

Application information elements are intended for "automatic processing", and so should contain 1091 
machine-oriented data, XML.  Such XML should conform to specifications.3 1092 

                                                      
3 The XML Schema specification states "{user information} is intended for human consumption, {application 
information} for automatic processing." 
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[Rule DOC6] 1093 

Any element that is an immediate child of an xsd:appinfo elements SHALL be in a namespace. 1094 

Rationale 1095 

Appinfo may contain XHTML data (which has no schema), or NIEM appinfo data (which has a schema).  1096 
Use of default namespace is OK, but content has to have a real namespace.  The XML namespaces 1097 
specification includes the concept of non-namespaced content.  Non-namespaced data confounds the 1098 
concept of distinctly identifiable data definitions. 1099 

[Rule DOC7] 1100 

Within a NIEM-conformant reference schema, a namespace that is a descendent of an xsd:appinfo 1101 
element SHALL be imported using the xsd:import element. 1102 

Rationale 1103 

The import of appinfo content is not strictly required by the XSD specification, but some tools break 1104 
without it, and it helps users maintain connections between namespaces and implementations. 1105 

8.3. Documented Components 1106 

There are many types of components within a NIEM schema.  Many of these components have identical rules 1107 
regarding techniques for documentation.  The rules in this section apply when a rule for a component type 1108 
indicates that the component is a documented component. 1109 

[Definition: Documented Component] 1110 

A documented component is any component defined by a NIEM-conformant schema which requires 1111 
documentation.  Documented components are indicated as such by component-specific rules.  1112 

[Rule DOC9] 1113 

A documented component must contain a definition.  Its definition is the first occurrence of an element 1114 
xsd:documentation that is a child of an element xsd:annotation that is a child of the element that 1115 
defines the component.  1116 

8.4. Types of Annotations in Reference Schemas 1117 

8.4.1. xsd:documentation: Summary 1118 

In keeping with [XMLSchemaDatatypes], the content of xsd:documentation elements is intended for human 1119 
consumption, not machine consumption.  As such, it should contain text, not XML, except when the intent is to 1120 
provide XML examples.  In such cases, the escape sequences “&lt;” and “&gt;” should be substituted for the XML 1121 
brackets “<” and “>” respectively.  1122 

[Definition: summary documentation element] 1123 

Within a NIEM-conformant reference schema, a summary documentation element SHALL be defined as 1124 
an element xsd:documentation which does not own an attribute 1125 
structures:annotationCategoryURI. 1126 

Rationale: 1127 

Any documentation element which does not carry an annotationCategoryURI attribute is assumed to be a 1128 
summary.   1129 

[Rule DOC8] 1130 

Within a NIEM conformant reference schema, there SHALL exist a summary documentation element as a 1131 
child of an element xsd:annotation that is a child of every occurrence of the following elements: 1132 
xsd:import, xsd:simpleType, xsd:complexType, xsd:group when acting as a model group 1133 
definition schema component, xsd:attributeGroup when acting as an attribute group definition 1134 
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schema component, xsd:element when acting as an element declaration schema component, or 1135 
xsd:attribute when acting as an attribute declaration schema component. 1136 

Rationale 1137 

These elements are the elements that act as definitions.  They must be annotated properly, including 1138 
basic summaries.  Note that the specific "acting" clauses are clearly defined in the XSD specification. 1139 

8.4.2. xsd:documentation: Full Description 1140 

8.4.3. xsd:appinfo: For Components 1141 

8.4.4. xsd:appinfo: List of Abbreviations 1142 

8.5. NIEM appinfo Namespace 1143 

To enable higher-level constructs beyond those provided by XML Schema, the NIEM includes additional, non-1144 
schema values to provide information about constructs in schemas.  These properties are represented by 1145 
elements from a specific namespace, referred to as the appinfo namespace.  The appinfo namespace for 1146 
NIEM is "http://niem.gov/niem/appinfo/1.0".  The schema for this namespace defines several elements 1147 
that are used in NIEM schemas. 1148 

8.5.1. The ConformantIndicator element 1149 

The element appinfo:ConformantIndicator is used for two purposes. 1150 

1. To indicate that a schema is conformant, or represents a conformant namespace. 1151 

2. To indicate that an imported schema is not conformant, or represents a non-conformant namespace. 1152 

[Rule NEWRULE] 1153 

The element appinfo:ConformantIndicator shall have a value of either true or false.  The element 1154 
MUST appear in appinfo for a component and will indicate: 1155 

• For a schema component, it indicates: 1156 
• true: the schema is a NIEM-conformant schema 1157 
• false: the schema is not a NIEM-conformant schema 1158 

• For a import element, it indicates: 1159 
• true: the imported schema represents a NIEM-conformant namespace 1160 
• false: the imported schema does not represent a NIEM-conformant namespace 1161 
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9. Subset Schemas Design Rules 1162 

A subset schema is a NIEM-conformant schema which is derived from a NIEM-conformant reference schema.  1163 
The primary rule is that any instance that validates to the subset schema must validate to the reference schema. 1164 

Note that these rules are not intended to act as a guide or procedure for generating subset schemas from 1165 
reference schemas.  They are intended to act as a set of constraints that ensure that generated schemas are 1166 
properly defined subsets. 1167 

[Definition: NIEM-conformant subset schema] 1168 

A NIEM-conformant subset schema is defined as a NIEM-conformant schema which is derived from a 1169 
NIEM-conformant reference schema according to the rules provided by this document.  1170 

Rationale 1171 

A subset schema is as defined by this document.  1172 

[Rule SSR2] 1173 

A NIEM-conformant subset schema MUST be constructed such that any instance that validates against 1174 
the subset schema SHALL validate to the reference schema on which it is based.  All other rules 1175 
regarding subset schemas are designed to support this rule. 1176 

Rationale 1177 

The most important rule regarding subset schemas is that they are to be transparent to the validating 1178 
application.  Any instance that validates to the subset schema must be able to validate against the 1179 
reference schema.  In this way, the subset schema is a schema for documents that contain a subset of 1180 
the content available to documents  that validate against the reference schema. 1181 

[Rule SSR3] 1182 

A NIEM-conformant subset schema SHALL be derived only via transformations explicitly allowed by this 1183 
document. 1184 

Rationale 1185 

This document describes all of the transformations available to produce subset schemas.  Other 1186 
transformations do not result in valid subsets.  If additional transformations are discovered, they should be 1187 
added to this specification. 1188 

[Rule SSR4] 1189 

A NIEM-conformant subset schema SHALL be composed of the content of the NIEM-conformant 1190 
reference schema, modified by transformations allowed by this document. 1191 

Rationale 1192 

Subset schemas are derived from reference schemas.  This means that a subset schema operates on the 1193 
target namespace and content of the reference schema.  It may act as a replacement for the reference 1194 
schema, for certain application processing or human browsing. 1195 

When transforming from a reference schema to a subset schema, requirements of outside sources must be 1196 
maintained.  If an element is used by an outside source, then it can't be deleted.  If a type uses an element, then 1197 
that element must be defined.  All such requirements must be kept in mind as the subset schema is constructed. 1198 

[Rule SSR5] 1199 

The derivation of NIEM-conformant subset schemas is subject to the rules of XML Schema.  No permitted 1200 
transformations obviate this requirement. 1201 

Rationale 1202 

These rules may specify that an element may be omitted, but that does not override the requirements of 1203 
XSD.  All types, elements, etc., that need to be validated should be included within the subset schema. 1204 
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Note that using these rules to derive a schema from a valid subset schema will generate a valid subset schema.  1205 
A valid subset of a valid subset is itself a valid subset. 1206 

9.1. Schema Document Element 1207 

[Rule SSR6] 1208 

The subset schema may omit any of the following child elements of the NIEM-conformant reference 1209 
schema's xsd:schema document element: xsd:import, xsd:simpleType, 1210 
xsd:complexType, xsd:group, xsd:attributeGroup, xsd:element, xsd:attribute. 1211 

Rationale 1212 

Many of the definition schema components may be omitted, if they are not otherwise required.  They are 1213 
"omittable."  This does not mean that users must remove them, or that it won't be a violation of XSD for 1214 
them to omit such components.  Note that omission of an element implies omission of the element and all 1215 
child elements, attributes, and namespace prefix definitions. 1216 

9.2. Annotations 1217 

[Rule SSR7] 1218 

Any element xsd:annotation, xsd:appinfo, or xsd:documentation may be omitted from a subset 1219 
schema. 1220 

Rationale 1221 

Annotations are merely informative to the XSD validation process, and so may be dropped.  Specific 1222 
annotations may be required in reference schemas, but may be omitted from subset schemas. 1223 

 1224 

9.3. Simple Type Definition 1225 

[Rule SSR8] 1226 

An attribute final owned by the element xsd:simpleType may be expanded in scope.  It may be set 1227 
to "#all", or to a superset of its value, or to a valid value if empty. 1228 

Rationale 1229 

Subclasses may wish to prevent elements from being substituted via element / substitution group 1230 
substitution.  In such a case, the value for final may be expanded to satisfy requirements. 1231 

9.4. Simple Content Definition 1232 

Note that these rules apply to simple types, as well as to simple content in a complex type. 1233 

[Rule SSR9] 1234 

An element xsd:enumeration, child of element xsd:restriction, may be omitted, provided that it 1235 
has a sibling element xsd:enumeration which is not omitted.  The final xsd:enumeration child of 1236 
an element xsd:restriction SHALL NOT be omitted. 1237 

Rationale 1238 

If the last xsd:enumeration is omitted, it drastically expands the set of legal values for the type. 1239 

[Rule SSR10] 1240 

The following elements, children of element xsd:restriction, may be added or adjusted to reduce the 1241 
set of legal values: xsd:minExclusive, xsd:minInclusive, xsd:maxExclusive, 1242 
xsd:maxInclusive, xsd:minLength, xsd:maxLength. 1243 
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[Rule SSR11] 1244 

The following elements, children of element xsd:restriction, may be added to reduce the set of legal 1245 
values: xsd:totalDigits, xsd:fractionDigits, xsd:length, xsd:pattern. 1246 

Rationale 1247 

Simple type facets may be added or strengthened to limit the available set of valid values.  In no case is it 1248 
acceptable to enlarge the set of allowable values. 1249 

9.5. Complex Type Definition 1250 

Note that the rules specified in section 9.4, Simple Content Definition, apply to complex type definitions with 1251 
simple content. 1252 

[Rule SSR12] 1253 

The attribute block owned by element xsd:complexType, or by element xsd:element, may be 1254 
expanded in scope.  It may be set to "#all", or to a superset of its original value, or to a valid value if 1255 
empty. 1256 

Rationale 1257 

Block prevents subtypes from being substituted for the specified element.  This may be enabled or 1258 
strengthened. 1259 

[Rule SSR13] 1260 

The attribute final owned by element xsd:complexType may be expanded in scope.  It may be set 1261 
to "#all", or to a superset of its value, or to a valid value if empty. 1262 

Rationale 1263 

Final prevents substitution groups from being used in element substitution.  This may be enabled or 1264 
strengthened 1265 

9.6. Attribute Declarations 1266 

[Rule SSR14] 1267 

The element xsd:attribute, when used as an attribute use schema component, may be omitted, if 1268 
the value of its attribute use is "optional" or "prohibited" 1269 

Rationale 1270 

Attributes which are optional may be removed.   1271 

Note that prohibited attributes may be omitted, but that does not imply that types derived from a type with a 1272 
removed prohibited attribute may add the prohibited attribute.  Schemas must be built from the reference 1273 
schemas, and then subset.  They should not be built from the subset schemas, at the risk of invalidity or non-1274 
conformance. 1275 

[Rule SSR15] 1276 

The attribute xsd:attribute, when used as an attribute use schema component, MAY have a 1277 
modified value which narrows the use of the attribute.  If the reference value is "optional," then the 1278 
subset may have any value.  Otherwise, it MUST have the original value. 1279 

Rationale 1280 

Optional attributes may be required or removed.  Those attributes which are already required or 1281 
prohibited must stay that way. 1282 
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[Rule SSR16] 1283 

An element xsd:attributeGroup which does not act as an attribute group definition may be omitted 1284 
only if all components declared by the attribute group are omittable. 1285 

Rationale 1286 

An attribute group may only be removed if all of its components are themselves removable.  If any 1287 
component of the attribute group is required, the attribute group must persist. 1288 

9.7. Complex Content 1289 
These rules provide methods for simplifying and reducing the model group defined in complex content.   1290 

[Rule SSR17] 1291 

An element xsd:group, xsd:choice, or xsd:sequence, SHALL NOT be omitted in a subset 1292 
schema if its reference definition parent element is xsd:complexType, xsd:extension, or 1293 
xsd:restriction.   1294 

Rationale 1295 

group, choice, and sequence that are roots of the particle schema component may not be eliminated, 1296 
as it has substantial changes on the contents allowable by the schema construct defined by the parent 1297 
element. 1298 

[Rule SSR18] 1299 

The element xsd:group, when used as a particle schema component, may be omitted from the subset 1300 
schema, only if its reference element has a minOccurs attribute with a value of "0", or if all components 1301 
declared by the group are themselves omittable. 1302 

Rationale 1303 

A group may be removed if it is, as a whole, optional. 1304 

[Rule SSR19] 1305 

The element xsd:choice may be omitted from the subset schema only if its reference element has a 1306 
minOccurs attribute with a value of "0", or if all components declared by the choice model group are 1307 
themselves omittable. 1308 

Rationale 1309 

A choice element may be removed if it is, as a whole, optional 1310 

[Rule SSR20] 1311 

The element xsd:sequence may be omitted from the subset schema only if its reference element has 1312 
a minOccurs attribute with a value of "0", or if all components declared by the sequence model group 1313 
are themselves omittable. 1314 

Rationale 1315 

A sequence may be removed if it is, as a whole, optional. 1316 

[Rule SSR21] 1317 

For any of xsd:group when used as a particle schema component, xsd:element when used as a 1318 
particle schema component, xsd:choice, or xsd:sequence, the attributes minOccurs and 1319 
maxOccurs may be adjusted to narrow the occurrence of subcomponents.  1320 

Rationale 1321 

A group may be removed if it is, as a whole, optional.  Note that the "particle schema component" 1322 
language is provided by [XMLSchemaStructures]. 1323 
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[Rule SSR22] 1324 

The element xsd:element when used as a particle schema component may be omitted from the 1325 
subset schema only if its reference element as a minOccurs attribute with a value of "0". 1326 

Rationale 1327 

A group may be removed if it is, as a whole, optional.   1328 

9.8. Element Definition 1329 

[Rule SSR23] 1330 

The attribute final of element xsd:element may be expanded in scope.  It may be set to "#all", or to 1331 
a superset of its value, or to a valid value if empty. 1332 

Rationale 1333 

Final prevents substitution groups from being used in element substitution.  This may be enabled or 1334 
strengthened 1335 

[Rule SSR24] 1336 

The attribute block of element xsd:element may be expanded in scope.  It may be set to "#all", or to 1337 
a superset of its value, or to a valid value if empty. 1338 

Rationale 1339 

Block prevents subtypes from being substituted for the specified element.  This may be enabled or 1340 
strengthened. 1341 

[Rule SSR25] 1342 

The attribute nillable on an element xsd:element may be set to "false" regardless of the value 1343 
of nillable in the reference element. 1344 
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10. Constraint Schema Design Rules 1345 

[Definition GJXDOM-compatible constraint schema] 1346 

A NIEM-compatible constraint schema is a schema that follows the rules for NIEM-compatible constraint 1347 
schemas as specified by this document. 1348 

 [Rule CSR1] 1349 

A NIEM-compatible constraint schema has a targetNamespace identical to the targetNamespace 1350 
of a NIEM-conformant reference schema. 1351 

Rationale 1352 

Constraint schemas operate by adding additional validation testing on already-valid content.  Content 1353 
must validate against NIEM-conformant reference schemas to be considered a NIEM-conformant 1354 
instance. 1355 
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11. Extension Schema Design Rules 1356 
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12. Document Schema Design Rules 1357 
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13. Conformant Instance Rules  1358 

This specification attempts to restrict XML instance data as little as possible, while still maintaining interoperability. 1359 

 [Rule IND1] 1360 

A NIEM-conformant instance MUST have a document element that is defined in a NIEM-conformant 1361 
schema.   1362 

Rationale 1363 

The root of a NIEM-conformant instance MUST be an element defined in a NIEM-conformant schema.  1364 
The term document element is defined by [XMLInfoSet]. 1365 

[Rule IND2] 1366 

A NIEM-conformant instance MUST validate to the reference schemas for namespaces contained in the 1367 
instance, and for namespaces required for validation. 1368 

Rationale 1369 

Reference schemas determine the exchange language.  Derived schemas, and subsets, are for specific 1370 
applications, but it is the reference schemas that set the standard for conformance. 1371 

NIEM embraces the use of XML schema instance attributes, including xsi:type, xsi:nil, and xsi:schemaLocation, 1372 
as specified by [XMLSchemaStructures].   1373 

[Rule IND3] 1374 

Within a NIEM-conformant instance, the meaning of an element with no content is undefined.  There 1375 
SHALL NOT be a meaning assigned to an element with no content. 1376 

Rationale 1377 

Elements without content have no specific meaning within NIEM.  The lack of data should not be 1378 
interpreted to mean anything other than that such data is not present. 1379 

The NIEM does not require a specific encoding, or specific requirements for the XML prolog, except as specified 1380 
by [XML]. 1381 

 1382 
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14. NIEM Data Modeling Guide 1383 

This document is a developer's guide to creating XML Schema documents for use with the National Information 1384 
Exchange Model (NIEM).  It presents guidelines for using specific structures and idioms in NIEM-conformant XML 1385 
Schema documents. 1386 

14.1. Overview of Data Modeling 1387 

This section outlines the basic techniques for creating data within NIEM, and for creating meaningful links 1388 
between data items. 1389 

The paper makes a distinction between types and classes.  In this section, the term "type" is used to refer to XML 1390 
Schema types, which include complex types and simple types.  The term "class" is used to refer to a specific 1391 
entity in the data model.   1392 

A class may represent a real world object, but it may also represent any conceptual object, such as relationships 1393 
and messages.   1394 

14.1.1. Properties 1395 

In order to understand how classes are created, we must understand the components that give meaning to the 1396 
model: properties.  A property is a component that describes a relationship between two classes.  The general 1397 
description is that a class has a property, and the value of the property is another class.  For example, a person 1398 
may have a property "person name" which has a value of "person name type". 1399 

Properties are turned into XML Schema elements for use in XML.  Because of the syntax provided by XML, there 1400 
are two representations of properties: content elements and reference elements.  A content element is an element 1401 
that, in XML, contains its value.  In the following example, the element PersonName is a content element, 1402 
because its content, in XML is an instance of its value class, "person name type". 1403 

XML example: PersonName is a content element 1404 

<Person> 1405 
  <PersonName> 1406 
    <PersonGivenName>Robert<PersonGivenName> 1407 
    <PersonSurName>Smith</PersonSurName> 1408 
  </PersonName> 1409 
  <PersonBirthDate>1970-01-01</PersonBirthDate> 1410 
</Person> 1411 

A reference element is a representation of a property.  In a reference element, the element points to its value 1412 
using a reference.  A reference element indicates its value using a reference to an identifier.  In the following 1413 
example, PersonNameReference is a reference element, indicating the value of the name using a reference to 1414 
the ID "A".   1415 

XML example: PersonNameReference is a reference element 1416 

<Person> 1417 
  <PersonNameReference s:reference="A"/> 1418 
  <PersonBirthDate>1970-01-01</PersonBirthDate> 1419 
</Person> 1420 
 1421 
<PersonName s:id="A"> 1422 
  <PersonGivenName>Robert<PersonGivenName> 1423 
  <PersonSurName>Smith</PersonSurName> 1424 
</PersonName> 1425 

Some properties are containers.  A container is a property which does not establish a semantically strong 1426 
relationship.  The relationship described by a container property is semantically weak.  A container indicates that a 1427 
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class (the one that has the property) has an instance of the value class.  Containers generally have names based 1428 
on their types; "person type" uses a container "person".  The class "activity type" uses a container "activity". 1429 

For example, an "incident" may have a property "person".  This indicates that an incident involved a person, but 1430 
doesn't tell us what role the person played, or any additional meaning about the involvement of the person in the 1431 
incident.   1432 

14.1.2. Methods for Creating Classes 1433 

There are several methods for creating data classes.  Each of these methods creates new types of "things" in the 1434 
data model.   1435 

14.1.2.1. Composition: Basic Class Construction 1436 

The basic method for creating classes is by composition of different parts.  The parts of a class are properties.  1437 
The parts composed ("put together") as a sequence of properties.  These properties indicate that the class has a 1438 
characteristic, a relationship, or a subpart.  For example: 1439 

• A person may have the property "birth location", which indicates a relationship: the place where a person 1440 
was born. 1441 

• A person may have the property "eye color", a characteristic. 1442 
• A vehicle may have the property "cargo", contents of the vehicle. 1443 

NIEM does not attempt to make concrete distinctions between these types of properties.  It uses the same 1444 
methods for each of them. 1445 

Properties that are put together to form a class may take the form of content elements or reference elements.  1446 
Which of these two is selected is often determined by use cases and complexity.  For example, a birth date would 1447 
be represented as a content element.  Even though lots of people could have the same birth date, and the date 1448 
could be used for many purposes, it is generally easier to just use copies of the date, when it is used in multiple 1449 
places.   1450 

Definition of people, however, may often take the form of a reference element.  As the definition of a person may 1451 
be complicated, it makes little sense to copy its value when it is needed in multiple places.  It is more effective to 1452 
reference a single definition, instead.  1453 

14.1.2.2. Roles 1454 

A role is a specific kind of class, which represents a particular context or activity for a thing.  A role may be specific 1455 
to time, incident, or employment.  For example, if I pick up an object and hit someone with it, the object will take 1456 
on the role of a weapon, and I will take on the role of a "justice subject", and the person I hit may take on the role 1457 
of "victim".  If I steal the object, the object will take the role of "stolen property".   1458 

We create a new class for a role when the role has specific data associated with it, and its own life cycle.  For 1459 
example, a weapon may be a role of an object, and may have a user of the weapon, an activity in which it is 1460 
involved, and a description of how the weapon was used.   1461 

If there is no data specific to the role, then no new class needs to be created.  In such a case, we would use the 1462 
class of the thing as the value of properties, instead of creating new role classes.  Take, for example, a vehicle 1463 
used as a getaway car from a robbery.  When designing the objects, we may take one of two options: 1464 

1. A robbery incident has a property ("getaway car") that is a "vehicle" 1465 

2. A robbery incident has a property ("getaway car") that is a role of a vehicle.  The "role class" may have 1466 
additional information (e.g. driver, violations, max speed, and origination point) that is specific to the 1467 
vehicle's use as a getaway car. 1468 

We only need to create role classes when there is data specific to a role.  We do not want to create role classes 1469 
for every possible use of a particular class.   1470 

Any object may take multiple roles in a message.  For example, a single person may take the role of "arresting 1471 
officer", "victim", and "witness". 1472 
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In XML Schema, a role is represented as a type.  The type has a particular "role of" property, which indicates of 1473 
what object it is a role.   1474 

XML Schema example for a weapon, a role of an object. 1475 

<xsd:complexType name="WeaponType"> 1476 
  <xsd:sequence> 1477 
    <xsd:element ref="u:RoleOfPropertyReference" ... /> 1478 
    <xsd:element ref="c:WeaponUserReference" ... /> 1479 
    <xsd:element ref="c:WeaponInvolvedInActivityReference" ... /> 1480 
    <xsd:element ref="c:WeaponUsageText" ... /> 1481 
  </xsd:sequence> 1482 
</xsd:complexType> 1483 

The example shows the definition of a "weapon", which is a role of "property" (a physical object in NIEM 0.3).  The 1484 
element "u:RoleOfPropertyReference" shows which object was used as a weapon.  In an instance it 1485 
contains a reference to the object that was used as a weapon: 1486 

Sample XML of a weapon object 1487 

<Weapon> 1488 
  <u:RoleOfPropertyReference s:ref="O"/> 1489 
  <c:WeaponUserReference s:ref="P"> 1490 
  <c:WeaponUsageText>Swung like a club</c:WeaponUsageText> 1491 
</Weapon> 1492 

This represents a weapon, which is a role of object "O", when used by person "P". 1493 

 1494 

14.1.2.3. Association 1495 

An association represents a relationship between objects.  It uses the methods described above.  However, it is 1496 
special in several ways: 1497 

1. It is labeled as an association type.   1498 

2. It represents a specific relationship between objects. 1499 

3. It contains mostly reference elements.  Elements that are not reference elements should be information 1500 
about the context of the relationship.   1501 

An association is used when a simple property is insufficient.  Take for example, a parent-child relationship.  We 1502 
could represent this as simple properties: 1503 

1. The parent object has a "child" property.  The value of the property is the child of the parent. 1504 

2. The child object has a "parent" property.  The value of the property is the parent of the child. 1505 

These two options create concerns: 1506 

• For a given relationship, which method do we use?  Do we link from the child, or from the parent, or both? 1507 
• If these are represented as content elements, what do we do about the circular reference? 1508 
• Where do we put additional information about the relationship? 1509 

To resolve these issues, we use an association type:   1510 

3. We create a new object that represents the relationship between the parent and the child.  1511 

An association type is composed of properties, as in the composition method.  However, those properties do not 1512 
describe an object.  They describe a relationship.  This gives us two types of properties in an association: 1513 

1. Data properties, describing the context and particulars of the relationships 1514 
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2. Participants, describing the objects involved in the relationships. 1515 

For the parent-child association example, an instance may look like the following. 1516 

XML sample of a parent-child relationship 1517 

<NuclearFamily> 1518 
  <PersonParentReference s:ref="Person1"/> 1519 
  <PersonChildReference s:ref="Person2"/> 1520 
  <FamilyKinshipText>Adopted</FamilyKinshipText> 1521 
</NuclearFamily> 1522 

14.1.2.4. Specialization of Classes 1523 

Specialization is a method that creates a new class from a base class.  The base class is some established type 1524 
of thing in the data model.  We create a special form of the base class called the derived class.  We do this 1525 
through specialization.  Specialization is described by Wikipedia: 1526 

Specialization is the opposite of generalization. 1527 

Concept B is a specialization of concept A if and only if: 1528 

• every instance of concept B is also an instance of concept A; and 1529 
• there are instances of concept A which are not instances of concept B. 1530 

For instance, 'Bird' is a specialization of 'Animal' because every bird is an animal, and there are 1531 
animals which are not birds (dogs, for instance). 1532 

Specialization in the data model is represented in XML Schema as complex type extension.  For example, a case 1533 
is a special form of activity: 1534 

XML Schema sample of specialization 1535 

<xsd:complexType name="CaseType"> 1536 
  <xsd:complexContent> 1537 
    <xsd:extension base="c:ActivityType"> 1538 
      <xsd:sequence> 1539 
        <xsd:element ref="c:CaseTitleText" ... /> 1540 
        <xsd:element ref="c:CaseTypeText" ... /> 1541 
        <xsd:element ref="c:CaseCategoryText" ... /> 1542 
        ... 1543 
        <xsd:element ref="c:CaseStatus" ... /> 1544 
      </xsd:sequence> 1545 
    </xsd:extension> 1546 
  </xsd:complexContent> 1547 
</xsd:complexType> 1548 

In data models, specialization should only be used to create a new type of thing.  It is not an appropriate way to 1549 
define additional properties of the base type, as that would hinder reuse.   1550 

Specialization enables type and element substitution, where the derived class may be used where the base class 1551 
is expected. 1552 

14.1.3. Additional Data Methods 1553 

There are additional methods for applying data to classes, which do not directly create new classes.  Instead, 1554 
these methods apply data to classes, without creating new classes. 1555 
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14.1.3.1. Metadata 1556 

Metadata is a structure used to provide information about objects, in a very dynamic fashion.  It is used when a 1557 
certain type of data must be applied widely, without modifying existing structures. 1558 

XML instance using metadata 1559 

<Person> 1560 
  <PersonName s:metadata="unclassified"> 1561 
    <PersonGivenName>Robert<PersonGivenName> 1562 
    <PersonSurName>Smith</PersonSurName> 1563 
  </PersonName> 1564 
  <PersonBirthDate s:metadata="classified">1970-01-01</PersonBirthDate> 1565 
</Person> 1566 
 1567 
<ism:SecurityMetadata 1568 
    s:id="unclassified" 1569 
    ism:classification="U"/> 1570 
<ism:SecurityMetadata 1571 
    s:id="classified" 1572 
    ism:classification="C" 1573 
    ism:nonICmarkings="..." 1574 
    ism:releasableTo="..." 1575 
    ism:ownerProducer="..."/> 1576 

14.1.3.2. Augmentation 1577 

Augmentation of an object is the addition of domain- or model-specific information about a type.   1578 

NIEM is composed of numerous namespaces.  These include the core NIEM namespaces (universal and 1579 
common).  Also included in NIEM are sanctioned domains, such as justice, immigration, and emergency 1580 
management.  Also working with NIEM are user-created NIEM-conformant namespaces.  Each of these 1581 
namespaces makes up a part of the data model for any application. 1582 

In this environment, any given part of the data model may need to add properties to existing classes.  Some 1583 
examples, from NIEM 0.3: 1584 

• Add a nick name to a person name (im) 1585 
• Add a distance to a relative location (im) 1586 
• Add directions to a location (em) 1587 
• Add an organizational role to a contact (em) 1588 
• Add registration information to an aircraft (intel) 1589 
• Add skillfulness information to a capability (intel) 1590 

This method stands apart from other methods, because: 1591 

1. It does not introduce new concepts.  There is a need for domains to add properties to existing classes, 1592 
without creating new classes for new concepts. 1593 

2. It does not define a specialized type of thing.  Properties need to be added to existing classes, not 1594 
specialized classes. 1595 

3. There is no relationship to represent.  The new properties are not in the context of a relationship to an 1596 
organization or other entity.  Instead, the properties are applicable to the base object. 1597 

4. The properties are defined by a domain or other party with a focused area of interest.  It is impractical 1598 
to include all such properties into core or common schemas, for general use.  Domains need to be able 1599 
define data for their use, independent from common definitions. 1600 

5. Designers of exchanges may wish to reuse these properties; their use is not limited to a single domain.  1601 
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14.2. Normalizing Element Use 1602 

All elements within types may be represented two ways: 1603 

1. A content element 1604 

2. A reference element. 1605 

14.2.1. Content Elements 1606 

Content elements enclose data. The following is an example: 1607 

<Person s:id="A"> 1608 
  ... 1609 
  <PersonName> 1610 
    <PersonFullName>Adam Smith</PersonFullName> 1611 
  </PersonName> 1612 
  ... 1613 
</Person> 1614 

In this example, there is a person object. The person contains an element called PersonName. The PersonName 1615 
element contains an element called PersonFullName. The PersonFullName element contains a string Adam 1616 
Smith. The PersonFullName element is obviously a content-containing element. It has the person’s name (a 1617 
literal string) as its content. 1618 

The PersonName is also a content-containing element, as its content represents the person name, as a 1619 
structured object. It contains the element PersonFullName, and could contain additional elements. 1620 

14.2.2. Reference Elements 1621 

Reference elements do not enclose content. Instead, they reference content as external objects: 1622 

<Incident> 1623 
  <ActivityDate>2003-10-02</ActivityDate> 1624 
  ... 1625 
  <IncidentSeizedPropertyRef s:ref="C"/> 1626 
  ... 1627 
</Incident> 1628 

In the above example, the property that was seized as part of the incident is referenced out to another object, an 1629 
XML object in the same XML instance, with the identifier C. 1630 

<Property s:id="C"> 1631 
  <PropertyDescriptionText> 1632 
    White microwave oven 1633 
  </PropertyDescriptionText> 1634 
  <PropertyTypeCode>HOVEN</PropertyTypeCode> 1635 
  <PropertyMakeName>Kenmore</PropertyMakeName> 1636 
  <PropertyModelName>63292</PropertyModelName> 1637 
</Property> 1638 

The object that has the identifier C is an instance of Property, specifically representing a microwave oven. The 1639 
reasons for representing the microwave oven outside of the incident should be quite evident: it is its own object, 1640 
independent of the incident. It has its own life cycle. If the incident did not exist, the microwave oven would still 1641 
exist. 1642 
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The seized property is an element of the incident because it is a fixed part of the incident. The incident involved 1643 
the seizing of the property, and that will not change. However, the incident should be a reference element, as the 1644 
property has its own life cycle, outside of the incident. 1645 

14.2.2.1. Identifying types for reference elements 1646 

All reference elements are of the same XML Schema type: ReferenceType from the structures namespace. 1647 
However, we would like to validate the XML Schema type of the thing to which the reference is referring (the 1648 
referred object). For example: 1649 

<IncidentSeizedPropertyRef s:ref="C"/> 1650 

For IncidentSeizedProperty, we would like the XML Schema type of the referred object to be 1651 
PropertyType, or something derived from that type. XML Schema does not help us here, because it does not 1652 
support type checking of reference targets. XML Schema supports XML:ID and XML:IDREF types, but the 1653 
constraints applied to them are few: no ID may be defined more than once, and any IDREF must refer to a 1654 
defined ID. Beyond that, XML Schema does not help. 1655 

To define the type of referred objects, we add additional non-XSD information to the schema, which we may 1656 
interpret with programs, stylesheets, or constraint languages. This additional information is added to the element 1657 
definitions, and concretely specifies the type of referred objects. 1658 

<xs:element name="IncidentSeizedPropertyRef" 1659 
    type="s:ReferenceType"> 1660 
  <xs:annotation><xs:appinfo> 1661 
    <i:referenceTarget i:name="PropertyType"/> 1662 
  </xs:appinfo></xs:annotation> 1663 
</xs:element> 1664 

In this example, the incident seized property is specifically defined to be of type PropertyType in the same 1665 
namespace. Following XML Schema rules, we would expect the target of the reference to be of type 1666 
PropertyType, or of a type properly derived from PropertyType. 1667 

14.2.2.2. Defining Elements 1668 

For each existing element occurring in a type: 1669 

• If the element links to a peer object, or to an independent object, then define it as a reference element 1670 
• If the element constitutes a characteristic or subpart of the containing object, then define it as an in-1671 

line content element 1672 
• If the element should be an association, then 1673 

• remove it from the containing type 1674 
• create a new association type for it 1675 
• add the containing type as a related object 1676 
• add the type of the original element as a related object, and 1677 
• add properties for the association, as needed 1678 

14.3. Element Substitution 1679 

XML Schema provides numerous ways to define and use elements. Use of elements within NIEM feature two 1680 
major concepts: 1681 

Types: A type represents a thing as a structured or simple value. Types represent entities or associations 1682 
between entities. Types may be large and structured, with many subparts, or be simple, restricted values 1683 
(e.g. a number between 1 and 10). 1684 
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Elements: An element conveys the meaning, or role, of a thing. An element may be a generic, context free holder 1685 
for a type (referred to as a container). An element may also be context-specific (referred to as a property). 1686 
An element may have at most one type. 1687 

Elements and types are both defined by XML Schema Documents (schemas). Elements and types within NIEM 1688 
are always defined within a namespace, the target namespace of the schema. Elements in schemas are defined 1689 
by XML statements: 1690 

<xsd:element 1691 
    name="LocationCountryISO3166Alpha2Code" 1692 
    type="iso_3166:CountryAlpha2CodeType"/> 1693 

This defines an element with the name LocationCountryISO3166Alpha2Code, with the type 1694 
iso_3166:CountryAlpha2CodeType. The element LocationCountryISO3166Alpha2Code is used within 1695 
a type, generally within an xsd:sequence. This XML statement defines an element that may be used in an XML 1696 
document: 1697 

<DocumentCoverageTextAddress> 1698 
  ... 1699 
  <LocationCountryISO3166Alpha2Code> 1700 
    US 1701 
  </LocationCountryISO3166Alpha2Code> 1702 
  ... 1703 
</DocumentCoverageTextAddress> 1704 

This XML data contains an element “LocationCountryISO3166Alpha2Code”. The content of the element (i.e. 1705 
attributes along with sub-elements or simple content) is as defined by the type of the element 1706 
(LocationCountryISO3166Alpha2Code). 1707 

14.3.1. Methods 1708 

14.3.1.1. Use substitutionGroup 1709 

Use substitutionGroup to derive elements from other elements. 1710 

The attribute substitutionGroup appears on element definitions. It indicates an element for which the element 1711 
being defined may be substituted. Take, for example the following definitions. 1712 

In the common namespace, an element is defined that contains codes for all countries recognized by ISO 3166: 1713 

<xsd:element 1714 
    name="LocationCountryISO3166Alpha2Code" 1715 
    type="iso_3166:CountryAlpha2CodeType"/> 1716 

In a local namespace, we may define an element that contains codes for all the South American countries: 1717 

<xsd:element 1718 
    name="LocationSouthAmericaCountryCode" 1719 
    type="my:SouthAmericaCountryCodeType" 1720 
    substitutionGroup="c:LocationCountryISO3166Alpha2Code"/> 1721 

Now, in an instance, we may put my:LocationSouthAmericaCountryCode wherever 1722 
my:LocationCountryISO3166Alpha2Code is expected. 1723 



   

 
NIEM NDR Page 54 of 81 
Draft Version 0.3  
September 30, 2006  

1. This is an XML Schema construct; we’re not creating new technology. 1724 

2. This may be done for any type of element: of complex type of simple type, of no type, extensions, 1725 
derivations, etc. 1726 

3. XML Schema has very specific rules about how elements may be substituted. 1727 

4. This need not be defined all at once. Additional derivations may be created as-needed, as the NIEM 1728 
model progresses. 1729 

14.3.1.2. Create root elements 1730 

Create abstract, type-less elements to represent specific concepts. 1731 

When two identical concepts are found that need separate representations, create an element as the root for the 1732 
two. For example, we have two different codes for location country: 1733 

<xsd:element 1734 
    name="LocationCountryISO3166Alpha2Code" 1735 
    type="iso_3166:CountryAlpha2CodeType"/> 1736 
<xsd:element 1737 
    name="LocationCountryFIPS10-4Code" 1738 
    type="fips_10-4:CountryCodeType"/> 1739 

These two elements are defined independently. There is no XML Schema entity to bring them together. Any type 1740 
wishing to use both of these must include both of them explicitly. We can see that we can extract a unifying 1741 
concept between these two elements: “Location Country Code”. We can create an element to represent this 1742 
unified concept: 1743 

<xsd:element 1744 
    name="LocationCountryCode" 1745 
    abstract="true"/> 1746 

Once this element is defined, we may redefine the concrete country codes to be substitutable for this conceptual 1747 
element: 1748 

<xsd:element 1749 
    name="LocationCountryISO3166Alpha2Code" 1750 
    type="iso_3166:CountryAlpha2CodeType" 1751 
    substitutionGroup="c:LocationCountryCode"/> 1752 
<xsd:element 1753 
    name="LocationCountryFIPS10-4Code" 1754 
    type="fips_10-4:CountryCodeType" 1755 
    substitutionGroup="c:LocationCountryCode"/> 1756 

The use of the substitutionGroup attribute brings these elements together under LocationCountryCode. 1757 

If we wish that a type contain codes for country locations, we may define it such that it includes only 1758 
c:LocationCountryCode, and, and it will be able to carry any derived element, which have 1759 
LocationCountryCode as their substitutionGroup. 1760 

There are three important characteristics of LocationCountryCode: 1761 

1. It is used as the substitutionGroup of more specific, concrete elements. 1762 

2. It has no type. This means that any content may be carried within a LocationCountryCode element. 1763 
Defining the element with no type allows other elements to be substituted for it, without restriction. If the 1764 
element had a type, only elements of properly derived type would be substitutable for it. 1765 
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3. It is abstract. This means that a LocationCountryCode element is not allowed to appear within an 1766 
XML document. This ensures that the LocationCountryCode element itself may not be used to carry 1767 
content within XML instances. Since the element is untyped, it would be able to carry arbitrary content; 1768 
having it abstract ensures that only well-defined data may be carried. 1769 

At this point, we have defined (1) a set of concretely-defined elements, with representations to conform to specific 1770 
requirements, and (2) A few abstract base elements, from which some of the concrete elements are derived. 1771 
These two steps are currently implemented in NIEM 0.2.1. In NIEM 0.2.1, the abstract elements are not used by 1772 
types. Types contain the specific concrete elements, instead of the abstract conceptual elements. 1773 

14.3.1.3. Use Abstract Elements 1774 

Have types in the reference schemas contain abstract elements.  Use abstract elements, when available, in type 1775 
definitions within reference schemas. Doing this for AddressType will appear as in Listing 2 (page 7). 1776 

Keep in mind that this proposes using the abstract elements within reference schemas, but not necessarily within 1777 
subset schemas. There are differences between the two: 1778 

Listing 1: XML Schema definition using concrete elements 1779 

<xsd:complexType name="AddressType"> 1780 
  ... 1781 
  <xsd:sequence> 1782 
    ... 1783 
    <xsd:element ref="c:LocationCountryFIPS10-4Code" ... 1784 
    <xsd:element ref="c:LocationCountryISO3166Alpha2Code" ... 1785 
    <xsd:element ref="c:LocationCountryISO3166Alpha3Code" ... 1786 
    <xsd:element ref="c:LocationCountryISO3166NumericCode" ... 1787 
    ... 1788 
  </xsd:sequence> 1789 
  ... 1790 
</xsd:complexType> 1791 

Listing 2: XML Schema definition using an abstract element 1792 

<xsd:complexType name="AddressType"> 1793 
  ... 1794 
  <xsd:sequence> 1795 
    ... 1796 
    <xsd:element ref="c:LocationCountryCode" ... 1797 
    ... 1798 
  </xsd:sequence> 1799 
  ... 1800 
</xsd:complexType> 1801 

1. Reference schemas are designed to be a superset of components exchanged in messages. 1802 

2. Subset schemas are created such that any XML document that validates against the subset schema 1803 
will validate against the reference schema. 1804 

Subset schemas may be generated such that they substitute elements for the abstract elements, making them 1805 
straightforward, sequenced versions of the definitions from the reference schemas. 1806 

Use of the abstract elements within type definitions in the reference schema will have the following effects: 1807 

1. Additional data types may be added for LocationCountryCode without modifying AddressType. 1808 

2. New versions of existing data types may be added, without modifying AddressType. For example, an 1809 
update to a code may be used immediately, without waiting for an update to AddressType, and without 1810 
type extension and type substitution methods. 1811 
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3. The syntax of XML instances using element substitution is very straightforward, and generally requires 1812 
less I.Q. in tools than does type substitution. 1813 

For example, here is a sample instance that uses element substitution, as proposed: 1814 

<DocumentCoverageTextAddress> 1815 
  ... 1816 
  <my:LocationCountryExtensionCode> 1817 
    MJQ 1818 
  </my:LocationCountryExtensionCode> 1819 
  ... 1820 
</DocumentCoverageTextAddress> 1821 

Here is a sample instance based on an extension of AddressType. Note the use of the xsi:type attribute. 1822 

<DocumentCoverageTextAddress 1823 
    xsi:type="my:ExtensionAddressType"> 1824 
  ... 1825 
  <my:LocationCountryExtensionCode> 1826 
    MJQ 1827 
  </my:LocationCountryExtensionCode> 1828 
  ... 1829 
</DocumentCoverageTextAddress> 1830 

Reference schemas that use element substitution may be subset in a concrete manner. Subset schemas may be 1831 
created that do not use element substitution. For example, the definition of AddressType displayed in Listing 2 1832 
(page 7) may be subset as in Listing 1 (page 7). 1833 

Tiered definitions will be easier to create. For example, a core definition of “PersonType” may include an 1834 
abstract definition for a residence, and concrete representations may be defined in domain schemas. 1835 

This would be a refactoring process, creating abstract elements when multiple 1836 
representations are needed, and using those elements in the appropriate types. 1837 

14.4. Roles 1838 

14.4.1. Description of Technique 1839 

Make the distinction between something that is a specialization of an object, and something that is a role of an 1840 
object. A role is an independently valid function of an object. A role may have a life cycle independent of any 1841 
specific activity. Continue to use type inheritance for specialized objects. Adopt the concept of a role as an object 1842 
that represents a specific function of another object. 1843 

Define the following terms: 1844 

Base object: Some object defined in the data model 1845 

Role object: An object that represents a specific function of the base object 1846 

Base object type: The XML Schema type of the base object 1847 

Role object type: The XML Schema type of the role object 1848 

RoleOf: A property of a role object. The RoleOf property specifies the base object, of which the role object is a 1849 
function. 1850 

Define schemas to account for roles: 1851 

• For each class under consideration, determine if it defines a role object. 1852 
• If it defines a role object, then: 1853 

• Create a type to represent the class of object 1854 
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• Ensure the type is not derived from its base object type. 1855 
• Add to the type an element RoleOf*Reference, referring to its base object type. 1856 

14.4.2. Syntax Examples 1857 

14.4.2.1. Instance 1858 

<Person s:id="P1"> 1859 
  <PersonName> 1860 
    <PersonFullName>Fred Smith</PersonFullName> 1861 
  <PersonFullName> 1862 
</Person> 1863 
 1864 
<EnforcementOfficial> 1865 
  <RoleOfPersonReference s:ref="P1"/> 1866 
  <EnforcementOfficialBadgeID> 1867 
    <ID>101101</ID> 1868 
  </EnforcementOfficialBadgeID> 1869 
</EnforcementOfficial> 1870 

Use of the element RoleOfPersonReference indicates the type of the base object (in this case, a person of type 1871 
PersonType). The type is not enforced by XML Schema validation. It is indicated, and could be enforced by XSLT 1872 
scripts, but is not enforced by XML Schema validation. 1873 

14.4.2.2. Type Definition 1874 

<complexType name="EnforcementOfficialType"> 1875 
  <complexContent> 1876 
    <extension base="this:SuperType"> 1877 
      <sequence> 1878 
        <element ref="this:RoleOfePersonReference"  1879 
            minOccurs="0" maxOccurs="unbounded"/> 1880 
        ... 1881 
        ... Additional elements defined for enforcement officials ... 1882 
        ... 1883 
      </sequence> 1884 
    </extension> 1885 
  </complexContent> 1886 
</complexType> 1887 

 1888 

14.5. Associations 1889 

Types will not be used only for representation of real-world objects. Types may also represent the association 1890 
between objects. These are called association objects, and the types are association types.  1891 

14.5.1. Introduction 1892 

Data definitions within NIEM consist of types and properties. Properties represent connections between these 1893 
types. These connections include: 1894 

• Characteristics: Values that are specific to an object, and likely invariants of that object 1895 
• Subparts: Objects that are smaller pieces of other objects 1896 
• Relationships: Connections between objects, which may be numerous and changing 1897 

Associations may be used to represent more complicated relationships than are possible with simple properties.   1898 
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14.5.2. Description of Technique 1899 

14.5.2.1. Association Instance Syntax 1900 

The syntax for an instance of an association is simple. Take, for example, the marriage of Adam and Barbara 1901 
Smith: 1902 

<MarriageAssociation> 1903 
  <SpouseRef s:ref="A"/> 1904 
  <SpouseRef s:ref="B"/> 1905 
  <MarriageDate>1937-05-12</MarriageDate> 1906 
  <DivorceDate>1973-06-02</DivorceDate> 1907 
</MarriageAssociation> 1908 

Interpreting the above XML fragment is straightforward: 1909 

• There is an association that we call a marriage. You can tell it is an association, and not a thing, because 1910 
it is named “something association”. 1911 

• This marriage association has two spouses, a marriage date, and a divorce date. 1912 
• One spouse is referenced as the object with the identifier A. The other spouse is identified by the ID B. 1913 

These objects are specified elsewhere in the same XML instance: Object A is specified as follows: 1914 

<Person s:id="A"> 1915 
  <PersonName> 1916 
    <PersonFullName>Adam Smith</PersonFullName> 1917 
  </PersonName> 1918 
</Person> 1919 

Object B is specified as follows: 1920 

<Person s:id="B"> 1921 
  <PersonName> 1922 
    <PersonFullName>Barbara Smith</PersonFullName> 1923 
  </PersonName> 1924 
</Person> 1925 

Other elements in the association specify more information about the association: 1926 

<MarriageDate>1937-05-12</MarriageDate> 1927 
 <DivorceDate>1973-06-02</DivorceDate> 1928 

The marriage date and divorce date are specific to the relationship between the two spouses, and so is a natural 1929 
fit for an element of the association. 1930 

14.5.2.2. Multiple Associations 1931 

An object may be involved in multiple associations, each of which is represented independently. The examples 1932 
below all occur within a single XML instance, and all refer to the same object with identifier A. In this case, the 1933 
object A is a person, who is an employee, a spouse, a parent, and a child. 1934 
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<EmployerEmployeeAssociation> 1935 
  <EmployeeRef s:id="A"/> 1936 
  ... 1937 
</EmployerEmployeeAssociation> 1938 
 1939 
<MarriageAssociation> 1940 
  <SpouseRef s:id="A"/> 1941 
  ... 1942 
</MarriageAssociation> 1943 
 1944 
<ParentChildAssociation> 1945 
  <ParentRef s:id="A"/> 1946 
  ... 1947 
</ParentChildAssociation> 1948 
 1949 
<ParentChildAssociation> 1950 
  <ChildRef s:id="A"/> 1951 
  ... 1952 
</ParentChildAssociation> 1953 

14.5.2.3. Schema for Associations 1954 

The definition of an association is composed of several parts: 1955 

1. An element that identifies the specific semantics of the association. 1956 

2. A type for the association. The type may be have precise semantics, or may be a more generally 1957 
defined type. 1958 

14.5.2.3.1. Element definitions 1959 

For each semantically distinct association, we define an element. Each element will have annotations indicating 1960 
the specific meaning of the association. Such documentation is not shown in this document, but follows the 1961 
guidelines established for NIEM 3.0. The syntax is standard XML Schema. For example, here is the definition for 1962 
a parent-child element: 1963 

<xs:element 1964 
    name="ParentChildAssociation" 1965 
    type="ParentChildAssociationType"/> 1966 

We may wish to define a more-specific type of parent-child association. For example, an adoptive parent-child 1967 
association: 1968 

<xs:element 1969 
    name="AdoptiveParentChildAssociation" 1970 
    type="ParentChildAssociationType"/> 1971 

If we wanted to make the type specific to an adoptive parent-child situation, then we define a new type, instead of 1972 
reusing the general parent-child type. 1973 

14.5.2.3.2. Association type definitions 1974 

The definition of types for associations is done as needed, depending on the content of the types. We do not, as a 1975 
rule, define a new type for each use or semantic definition of an association. Instead, we define them as 1976 
necessary, to accommodate the content required. Here is an example definition for a type for the parent-child 1977 
association: 1978 
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<xs:complexType name="ParentChildAssociationType"> 1979 
  <xs:complexContent> 1980 
    <xs:extension base="u:AssociationType"> 1981 
      <xs:sequence> 1982 
        <xs:element ref="this:ParentRef" minOccurs="0" 1983 
            maxOccurs="unbounded"/> 1984 
        <xs:element ref="this:ChildRef" minOccurs="0" 1985 
            maxOccurs="unbounded"/> 1986 
      </xs:sequence> 1987 
    </xs:extension> 1988 
  </xs:complexContent> 1989 
</xs:complexType> 1990 

The type definition has several parts: 1991 

1. The name of the type is something "AssociationType”. This makes associations between objects 1992 
distinct from other types of object definitions. 1993 

2. The type is derived from another association type. This allows definition of type hierarchies for 1994 
associations, and the definition of characteristics that are shared across multiple association types. 1995 

3. The content of the association is a sequence of elements. The content of the association could be 1996 
entirely related objects. The association could also contain characteristics of the associations, such as 1997 
dates, names, identifiers, etc. 1998 

14.5.2.4. Association type hierarchy 1999 

The use of a type hierarchy is a useful feature, but should not be overused. In the examples so far, we have seen 2000 
the following: 2001 

1. A root association type, which helps group association types. 2002 

2. An association type for a parent-child association. This type had a parent and a child. 2003 

3. An association type for the marriage association. 2004 

We may wish to insert into this list of types a root type for all interpersonal associations. This, however, may be 2005 
over-design, due to several factors: 2006 

1. What content would go into a generalized interpersonal association? All we would know is that the 2007 
participants were people. A list of PersonRef elements is not very useful, and does not provide any 2008 
semantics. The elements defined at this stage would have to be discarded to provide concrete meaning 2009 
(such as spouse, parent, and child). 2010 

2. What makes an association interpersonal? Is it just that there are two people participating in the 2011 
association? Would an employer-employee be an interpersonal relationship, if the employer were an 2012 
individual? Would an offender-victim relationship be interpersonal? What if the victim was an 2013 
organization? 2014 

3. Due to restrictions of XML Schema, we only have single-inheritance available in our toolbox; a type 2015 
may have at most only a single parent. These sorts of place-holder types have limited usefulness, as they 2016 
cannot be combined together to provide useful meaning. 2017 

Use of type inheritance should be carefully considered. Keep in mind that common types may be inserted into the 2018 
type hierarchy later in model development. 2019 

14.5.3. Defining Associations 2020 

A type should be defined as an association among objects (i.e. an AssociationType should be created to relate the 2021 
objects) only if: 2022 
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1. The related objects are peers of one another and not simply a defining characteristic of or subpart of 2023 
the other object(s). The term peers is used in a data modeling sense to mean that each object being 2024 
related has its own set of characteristic property values independently of the other. 2025 

2. Each related object can exist independently, that is, it does not depend on the existence of the 2026 
association or the other object(s). In other words, none of the objects being related should lose meaning if 2027 
separated from the others. 2028 

An association may have its own characteristic attributes (properties) that either cause or result from the 2029 
existence of the association. These attributes are characteristic of the association and define its nature or 2030 
distinguish it from other associations and objects. 2031 

New associations should be identified based on requirements or use within IEPDs, not simply because they exist, 2032 
or may be used someday. 2033 

14.6. Metadata 2034 

This technique provides a general method for applying metadata and additional content to data objects. It enables 2035 
users to create a block of metadata and apply it to objects in exchanges. An object states what metadata applies 2036 
to it using the metadata attribute. 2037 

In this example, we have a specific reported date for a person object: 2038 

<Person s:metadata="MD"> 2039 
  <PersonName> 2040 
    <PersonGivenName>Adam</PersonGivenName> 2041 
    <PersonSurName>Brooks</PersonSurName> 2042 
  </PersonName> 2043 
  <PersonBirthDate>1960-10-07</PersonBirthDate> 2044 
</Person> 2045 
 2046 
<Metadata s:id="MD"> 2047 
  <ReportedDate>2005-08-01</ReportedDate> 2048 
</Metadata> 2049 

This example has a few interesting features: 2050 

• The person object refers to its metadata 2051 

The reference uses the attribute s:metadata 2052 

The reference is to the object with id MD 2053 

• The metadata is a separate element 2054 

The element is called Metadata. 2055 

The metadata object has the id MD. 2056 

• The ID is conveyed with the attribute s:id 2057 

The metadata object contains an element ReportedDate 2058 

This is the core syntax. There are additional features that make this technique interesting. 2059 

14.6.1.1. Additional Cardinality of Metadata 2060 

This technique allows additional cardinality in metadata. Under GJXMD 3.0, each attribute may appear at most 2061 
once. Under this method, the number of times a piece of information occurs may be controlled via the usual 2062 
methods for elements in types. 2063 
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<Metadata s:id="MD"> 2064 
  <CommentText>Picked up on 12/20/02</CommentText> 2065 
  <CommentText>Released up on 12/22/02</CommentText> 2066 
  <CommentText>... additional comments ...</CommentText> 2067 
</Metadata> 2068 

14.6.1.2. Additional complexity of metadata 2069 

This technique allows for metadata information to be defined as is usual for elements. Elements may be of simple 2070 
types, reference types, or structured types: This example has the reporting person as a reference to another 2071 
person object: 2072 

<Metadata s:id="MD">  2073 
  <ReportingPersonRef s:ref="CD"/>  2074 
</Metadata> 2075 

The following example has a ReportingPersonName of a structured type:  2076 

<Metadata s:id="MD">  2077 
  <ReportingPersonName>  2078 
    <PersonGivenName>Charles</PersonGivenName>  2079 
    <PersonSurName>Davis</PersonSurName>  2080 
  </ReportingPersonName>  2081 
</Metadata> 2082 

14.6.1.3. Multiple blocks of metadata 2083 

This technique enables the application of multiple blocks of metadata. For example, a user may wish to apply 2084 
super type metadata as well as custom metadata. The instance for this may look like the following: 2085 

<Person s:metadata="M1 M2">  2086 
  <PersonName>  2087 
    <PersonGivenName>Adam</PersonGivenName>  2088 
    <PersonSurName>Brooks</PersonSurName>  2089 
  </PersonName>  2090 
  <PersonBirthDate>1960-10-07</PersonBirthDate>  2091 
</Person>  2092 
 2093 
<Metadata s:id="M1">  2094 
  <ReportedDate>2005-08-01</ReportedDate>  2095 
</Metadata>  2096 
 2097 
<my:Metadata s:id="M2">  2098 
  <my:DatabaseID>2829019291</my:DatabaseID>  2099 
</my:Metadata> 2100 

This example shows two metadata blocks. Both are linked from the person object’s metadata attribute. The first 2101 
metadata block indicates the reported date. The second indicates a custom, extension database identifier. 2102 

This is made possible because of the way s:metadata is defined. The metadata attribute is of type 2103 
xsd:IDREFS, which enables references to multiple targets. See [XMLSCHEMA-2], or [XML-INFOSET] for 2104 
background on IDREFS. 2105 
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14.6.1.4. Reuse of Metadata 2106 

This technique enables a block of metadata to be reused in multiple locations. A block of metadata may be 2107 
defined once, and labeled (e.g. Source1, below). Then it may be reused by multiple objects. This creates a 2108 
method similar to CSS classes, for identifying different types or sources of information. 2109 

In the following example, there are two explicit sources: 2110 

• Source 1 defines PersonName, PrimaryContactInformation, and PersonBirthDate 2111 
• Source 2 defines Residence and Employment. 2112 

<Person> 2113 
  <PersonName s:metadata="Source1"> 2114 
    <PersonGivenName>Adam</PersonGivenName> 2115 
    <PersonSurName>Brooks</PersonSurName> 2116 
  </PersonName> 2117 
  <Residence s:metadata="Source2"> 2118 
    .... 2119 
  </Residence> 2120 
  <PrimaryContactInformation s:metadata="Source1"> 2121 
    .... 2122 
  </PrimaryContactInformation> 2123 
  <Employment s:metadata="Source2"> 2124 
    .... 2125 
  </Employment> 2126 
  <PersonBirthDate s:metadata="Source1"> 2127 
    1960-10-07 2128 
  </PersonBirthDate> 2129 
</Person> 2130 
 2131 
<Metadata s:id="Source1"> 2132 
  ... data specific to source 1 ... 2133 
</Metadata> 2134 
 2135 
<Metadata s:id="Source2"> 2136 
  ... data specific to source 2 ... 2137 
</Metadata> 2138 

14.6.1.5. Metadata Mechanism is Independent of NIEM 2139 

Schema Release 2140 

This technique makes code table schemas, and additional schemas independent of the main NIEM schemas. A 2141 
code schema will import the structures namespace, from which it will obtain the attribute s:metadata. 2142 

The following example shows a vehicle registration type code, which is of a type from NCIC. 2143 

<VehicleRegistration> 2144 
  <VehicleRegistrationPlateTypeCode s:metadata="PCMD"> 2145 
    BU 2146 
  </VehicleRegistrationPlateTypeCode> 2147 
</VehicleRegistration> 2148 
 2149 
<Metadata s:id="PCMD"> 2150 
  ... metadata relevant to the plate code ... 2151 
</Metadata> 2152 

The schema definition for this would not need to involve a per-release proxy. Instead, all versions of the NCIC 2153 
schemas could be derived from the same structures schema, which provides the linking mechanism. The 2154 
NIEM Schema would define the element, using the type from the NCIC schema: 2155 
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<element name="VehicleRegistrationPlateTypeCode" type="NCIC:LITType"/> 2156 

The NCIC schema would create a simple type for the license plate code values: 2157 

<xsd:simpleType name="LITSimpleType"> 2158 
  <xsd:restriction base="xsd:token"> 2159 
    <xsd:enumeration value="AM"/> 2160 
    <xsd:enumeration value="AP"/> 2161 
    ... 2162 
    <xsd:enumeration value="VF"/> 2163 
    <xsd:enumeration value="ZZ"/> 2164 
  </xsd:restriction> 2165 
</xsd:simpleType> 2166 

The schema would then create a complex type. The complex type would be used as the type of elements. The 2167 
type would be derived from a type in the structures namespace. This complex type would provide the 2168 
s:metadata attribute. 2169 

<complexType name="LITType"> 2170 
  <simpleContent> 2171 
    <restriction base="s:SimpleObjectType"> 2172 
      <simpleType> 2173 
        <restriction base="this:LITSimpleType"/> 2174 
      </simpleType> 2175 
    </restriction> 2176 
  </simpleContent> 2177 
</complexType> 2178 

The definition of super type metadata in the main NIEM schema would indicate that it is applicable to all objects. 2179 
This example applies to all Objects from the structures namespace. 2180 

<complexType name="SuperTypeMetadataType"> 2181 
  <annotation><appinfo> 2182 
    <i:appliesTo i:name="Object" 2183 
        i:namespace="http://www.it.ojp.gov/structures/2.0"/> 2184 
  </appinfo></annotation> 2185 
  <complexContent> 2186 
    <extension base="s:MetadataType"> 2187 
      <sequence> 2188 
        <element ref="j:CommentText" 2189 
            minOccurs="0" maxOccurs="unbounded"/> 2190 
        <element ref="j:CriminalInformationIndicator" 2191 
            minOccurs="0" maxOccurs="unbounded"/> 2192 
        ... 2193 
        <element ref="j:ReportedDate" 2194 
            minOccurs="0" maxOccurs="unbounded"/> 2195 
      </sequence> 2196 
    </extension> 2197 
  </complexContent> 2198 
</complexType> 2199 

14.6.1.6. Metadata May be Defined to Apply to Specific 2200 

Types of Objects 2201 

A metadata block may be defined to apply to a specific class of object. For example, a metadata block may apply 2202 
to PersonType from the NIEM. This is expressed via appinfo in the schema: 2203 
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<complexType name="MyPersonMetadataType"> 2204 
<annotation><appinfo> 2205 
<i:appliesTo i:name="PersonType" 2206 
i:namespace="http://niem.gov/niem/universal/0.2"/> 2207 
</appinfo></annotation> 2208 
<complexContent> 2209 
<extension base="s:MetadataType"> 2210 
<sequence> 2211 
<element ref="my:MyPersonID" 2212 
minOccurs="0" maxOccurs="unbounded"/> 2213 
... 2214 
</sequence> 2215 
</extension> 2216 
</complexContent> 2217 
</complexType> 2218 

Here we have a metadata block that defines the element MyPersonID, which may be applied to any 2219 
PersonType object. 2220 

14.6.1.7. Metadata may be defined to apply to links 2221 

between objects 2222 

A metadata block may be defined that applies to links between objects, not the objects themselves. Take as an 2223 
example the special case of the name of a person: 2224 

• The person is held in custody 2225 
• The definition of the name comes from external records 2226 
• The assignment of the name to the person is based on an eyewitness 2227 

This presents three separate blocks of metadata: 2228 

• The person has one block of metadata, stating that the data was entered via booking 2229 
• The name has a block of metadata, stating when the data was validated, and the data source from which 2230 

it was obtained 2231 
• The assignment of the name to the person has additional metadata, indicating the witness. 2232 

The metadata on the link is expressed with an attribute called linkMetadata. 2233 
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<Person s:metatadata="PM"> 2234 
  <PersonName s:metadata="PNM" s:linkMetadata="LM"> 2235 
    <PersonPrefixName>Mr.</PersonPrefixName> 2236 
    <PersonGivenName>Xavier</PersonGivenName> 2237 
    <PersonMiddleName>Laughton</PersonMiddleName> 2238 
    <PersonSurName>McAlester</PersonSurName> 2239 
    <PersonSuffixName>III</PersonSuffixName> 2240 
    <PersonFullName> 2241 
      Mr. Xavier Laughton McAlester, III 2242 
    </PersonFullName> 2243 
    <PersonNameInitialsText>XLM</PersonNameInitialsText> 2244 
  </PersonName> 2245 
</Person> 2246 
 2247 
<Metadata s:id="LM"> 2248 
  <!-- data specific to the link between 2249 
      the person and the person name --> 2250 
  <CommentText>Reported by witness</CommentText> 2251 
  <ReportingPersonName> 2252 
    <PersonGivenName>Edward</PersonGivenName> 2253 
    <PersonSurName>Fritz</PersonSurName> 2254 
  </ReportingPersonName> 2255 
  <ReportedDate>2002-10-01</ReportedDate> 2256 
</Metadata> 2257 
 2258 
<Metadata s:id="PM"> 2259 
  ... data specific to the person ... 2260 
</Metadata> 2261 
 2262 
<Metadata s:id="PNM"> 2263 
  ... data specific to the person name ... 2264 
</Metadata> 2265 

The attribute linkMetadata conveys information that can’t be conveyed by the metadata attribute. It tells 2266 
applications that the metadata does not apply to either object. Instead, it applies to the connection between the 2267 
two objects. 2268 

14.7. Class Augmentation in NIEM 2269 

14.7.1. Background 2270 

Dependence on inheritance for domain-specific extensions creates several problems.  These problems include: 2271 

• Lack of reusability of domain-specific extensions. 2272 
• Difficulty of defining extensions from multiple domains. 2273 
• Overly-granular reuse of multiple-domain content:  Reuse is at the element level, rather than the domain 2274 

level.  Types composed at that level are not interoperable.  2275 

We require a method that allows application of data to existing types, while maximizing reuse of that data and 2276 
avoiding the limitations associated with an inheritance-only based extension method. 2277 

14.7.2. Terms and Concepts 2278 

In this section, the following terms are used: 2279 

• Base type: The type to which new data needs to be added.  The base type may come from a NIEM core 2280 
namespace or other NIEM-conformant namespaces.   2281 

• Augmentation data: Data to be added to the base type.  2282 

Augmentation of an object is the addition of domain- or model-specific information about a type.  Augmentations 2283 
may be provided by domains or NIEM-conformant application data models.   2284 

For example, we will need "justice-domain" data about a person.  This is different than creating a new kind of 2285 
person.  In the real world, a person for whom justice-related data exists is not a different type of person than one 2286 



   

 
NIEM NDR Page 67 of 81 
Draft Version 0.3  
September 30, 2006  

that has intel-related data about them.  It is most likely that a person will have both intel-related and justice-related 2287 
data about them. 2288 

ZZZZZZZZZZZZZZZZ 2289 

Error! Objects cannot be created from editing field codes. 2290 

14.7.3. Method 2291 

Use type extension to create IEPD-specific and domain model entities.  Domains provide specially-defined 2292 
elements as building blocks for IEPD-based extensions.  These elements contain augmenting data.  These 2293 
elements are to be added to extensions of base types, to create derived types with augmented data. 2294 

This method relies on definition of types using XML Schema type extension.  This enables the use of type 2295 
substitution, element substitution, and restriction.  2296 

14.7.3.1. Examples 2297 

Examples for this method use a simple set of data.  There are three namespaces.  Each namespace is created by 2298 
a schema that is associated with NIEM.  The properties used by the namespaces might be defined anywhere 2299 
within NIEM.  The namespaces used are: 2300 

• Namespace "base": This namespace models a common or core set of definitions.  It contains the base 2301 
object.  The base object is the object to which augmentations are affixed.  The base object type is named 2302 
base:BaseType.  A container for the base object is element base:BaseContainer.  BaseType has 2303 
properties Property1, Property2, and Property3. 2304 

• Namespace "domain": This namespace models a domain which defines augmentations to the base 2305 
object.  The augmentations are the elements Property4, Property5, and Property6.  These 2306 
augmentations are contained in a type named domain:DomainAugmentationType, when necessary. 2307 

• Namespace "iepd".  This models an IEPD, or other concrete message definition.  It contains structures 2308 
and types necessary for messages to use the methods under discussion.  Some methods require IEPDs 2309 
to define what structures are in use.  Other methods do not allow IEPDs to make such specifications, and 2310 
rely on other methods for selecting augmenting data for use. 2311 

Diagram of data used for examples: 2312 

 2313 

The following instance example shows an IEPD-based extension, using elements to aggregate augmenting 2314 
elements.  This instance looks like the IEPD extension with groups, except that the augmenting elements are 2315 
wrapped in a containing element. 2316 
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Sample XML instance for IEPD extension with elements: 2317 

<iepd:IEPDDerivedContainer> 2318 
  <base:Property1/> 2319 
  <base:Property2/> 2320 
  <base:Property3/> 2321 
  <domain:DomainAugmentationContainer> 2322 
    <domain:Property4/> 2323 
    <domain:Property5/> 2324 
    <domain:Property6/> 2325 
  </domain:DomainAugmentationContainer> 2326 
</iepd:IEPDDerivedContainer> 2327 

The domain schema defines DomainAugmentationType as an augmentation of BaseType.  2328 
DomainAugmentationType is declared to be an augmentation by being an extension of 2329 
s:AugmentationType, which is described below.  The augmentation container element is declared to be an 2330 
augmentation of base:BaseType through the use of appinfo annotations.  2331 

XML Schema for the domain namespace: 2332 

<complexType name="DomainAugmentationType"> 2333 
  <complexContent> 2334 
    <extension base="s:AugmentationType"> 2335 
      <sequence> 2336 
        <element ref="domain:Property4"/> 2337 
        <element ref="domain:Property5"/> 2338 
        <element ref="domain:Property6"/> 2339 
      </sequence> 2340 
    </extension> 2341 
  </complexContent> 2342 
</complexType> 2343 
 2344 
<element  2345 
    name="DomainAugmentationContainer"  2346 
    type="domain:DomainAugmentationType"  2347 
    substitutionGroup="s:Augmentation"> 2348 
  <annotation> 2349 
    <appinfo> 2350 
      <i:appliesTo 2351 
         i:namespace="http://examples.niem.gov/ns/aug/base" 2352 
         i:name="BaseType"/> 2353 
    </appinfo> 2354 
  </annotation> 2355 
</element> 2356 

The proper use of such defined components may be easily verified through the use of schema verifiers.   2357 

The IEPD schema creates an extension of BaseType, using type extension.  Note the definition of a concrete 2358 
container element, substitutable for base:BaseContainer. 2359 
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XML Schema fragment for the IEPD namespace: 2360 

<complexType name="IEPDDerivedType"> 2361 
  <complexContent> 2362 
    <extension base="base:BaseType"> 2363 
      <sequence> 2364 
        <element ref="domain:DomainAugmentationContainer"/> 2365 
      </sequence> 2366 
    </extension> 2367 
  </complexContent> 2368 
</complexType> 2369 
 2370 
<element 2371 
    name="IEPDDerivedContainer" 2372 
    type="iepd:IEPDDerivedType" 2373 
    substitutionGroup="base:BaseContainer"/> 2374 

If the IEPD used multiple augmentations, they would appear within the sequence defined by the 2375 
IEPDDerivedType. 2376 

We may wish to make a rule that such augmented types must be declared as final, which would prevent them 2377 
from being used as the basis for further type extension. 2378 

The domain namespace, domain, uses new types and elements from the structures namespace.   2379 

XML Schema fragment for the structures namespace: 2380 

<complexType name="AugmentationType" abstract="true"> 2381 
  <attribute ref="s:metadata"/> 2382 
  <attribute ref="s:linkMetadata"/> 2383 
</complexType> 2384 
 2385 
<element name="Augmentation" type="s:AugmentationType"/> 2386 

These structures ensure that the domain-defined types are clearly an augmentation.  The use of the 2387 
"Augmentation" element provides a base for element substitution, as well as tagging elements as being 2388 
augmentations. 2389 

14.8. Using Non-NIEM XML Dialects with NIEM  2390 

14.8.1. Introduction 2391 

This section provides guidelines for NIEM users wishing to profile and use external standards with NIEM.  In many 2392 
cases employing particular standards in a NIEM Information Exchange Package Description (IEPD) may actually 2393 
be preferred.   2394 

There are a variety of commonly used standards that are currently represented in XML Schema.  There must be a 2395 
method for NIEM to promote and use these external standards where requirements dictate.  2396 

This section focuses on a single use case:  When NIEM IEPDs need to reference, import, and use components in 2397 
an external standard schema or namespace that does not conform to NIEM Naming and Design Rules.  It 2398 
presents a methodology for including non-NIEM components in NIEM-conformant schemas.  It enables data 2399 
modeling efforts to build NIEM-conformant components from non-NIEM data objects. 2400 

14.8.2. Background, and Terminology 2401 

14.8.2.1. Schema Components 2402 

We use the term “schema component” for any object constructed by XML Schema. Schema components are 2403 
specified by the XML Schema specification. They include attribute declarations, type definitions, etc. Some of 2404 
these components may not be referenced from imported XML Schemas, and so are not concerns of this 2405 
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discussion. They include attribute uses (which are distinct from attribute declarations) and use of model groups 2406 
(distinct from model group definitions). 2407 

From XML Schema Part 1: Structures, 2d Ed, W3C Recommendation, 28 October 2004:  2408 

[Definition:]   Schema component is the generic term for the building blocks that comprise the abstract 2409 
data model of the schema. [Definition:]   An XML Schema is a set of schema components. There are 13 2410 
kinds of component in all, falling into three groups. The primary components, which may (type definitions) 2411 
or must (element and attribute declarations) have names are as follows: 2412 

• Simple type definitions  2413 
• Complex type definitions  2414 
• Attribute declarations  2415 
• Element declarations  2416 

The secondary components, which must have names, are as follows: 2417 

• Attribute group definitions  2418 
• Identity-constraint definitions  2419 
• Model group definitions  2420 
• Notation declarations  2421 

Finally, the "helper" components provide small parts of other components; they are not independent of 2422 
their context: 2423 

• Annotations  2424 
• Model groups  2425 
• Particles  2426 
• Wildcards  2427 
• Attribute Uses  2428 

This document is concerned only with the use of components that may be referenced from imported namespaces. 2429 
Such components may be defined in one schema and used in another, when the referencing schema imports the 2430 
schema that defines the component.  This specification also does not pay attention to Notations and Identity 2431 
constraints.  Specifically, NIEM supports the referencing of the following types of components from external 2432 
namespaces: 2433 

• Simple type definitions  2434 
• Complex type definitions  2435 
• Attribute declarations  2436 
• Element declarations  2437 
• Attribute group definitions  2438 
• Model group definitions  2439 

14.8.2.2. NIEM Components 2440 

We use the term “NIEM Component” for a schema component from a namespace that is NIEM-conformant, which 2441 
follows the rules defined by the NIEM Naming and Design Rules (NDR) for NIEM conformance.  The NIEM NDR 2442 
provides a profile of W3C XML Schema, along with additional constructs to support creating a data model.  In 2443 
order to be NIEM-conformant, a namespace must claim conformance, and must follow specific rules about 2444 
structure, XML Schema feature usage, naming, and documentation. 2445 

NIEM conformance is determined at the namespace level, based on a reference schema for a particular 2446 
namespace.  To determine if a namespace is NIEM-conformant, the reference schema for the namespace is 2447 
tested against a set of NIEM conformance rules.  These rules include such things as: 2448 

1. The schema must claim to be NIEM conformant. 2449 

2. The schema must have a target namespace, over which the schema author has dominion. 2450 

3. Schema components must be documented. 2451 
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4. Component documentation must take specific forms, including being supported with XML annotations 2452 
from a NIEM-specific namespace, to support data modeling concepts. 2453 

14.8.2.3. External Components 2454 

We use the term “External Component” for a schema component from a namespace that does not follow the rules 2455 
for NIEM conformance. 2456 

Examples of external, non-NIEM standards include: 2457 

• GML: Geography Markup Language.  GML is a prime candidate for content that may be included in NIEM 2458 
structures.   2459 

• XHTML: Extensible HyperText Markup Language.  This language would likely be used for exchanging 2460 
simple structured text. 2461 

• SAML: Security Assertion Markup Language.  This is a likely language into which NIEM content will be 2462 
embedded.  Some SAML assertions will likely need to contain content defined by NIEM. 2463 

14.8.3. Techniques 2464 

External components are encapsulated in NIEM-conformant components.  This introduces the concept of 2465 
“external adapter” types.  An external adapter type is a NIEM-conformant XML Schema complex type that wraps a 2466 
set of external content. 2467 

Error! Objects cannot be created from editing field codes. 2468 

These adapter types and container elements are XML Schema components, and so are defined within the 2469 
namespace of the schema currently being defined.   2470 

This document specifies two constructs, which contain external content.  The first is the external adapter type.  2471 
This type is a NIEM-conformant type that contains attributes and elements from external namespaces.  The 2472 
second is the external container element.  The container element is used when an external namespace provides 2473 
top-level types for use, but does not provide appropriate top-level elements.  In such a case, create a container 2474 
element of the externally-provided type.  Container elements are defined in NIEM-conformant namespaces, are 2475 
named differently than regular NIEM-conformant elements, and are used in a more restricted way. 2476 

Consistent with the fundamentals of NIEM, XML elements are used for semantics, and XML Schema types are 2477 
used to contain necessary structures.  Specific rules for definition of adapter components will take this approach, 2478 
focusing on encapsulating external structures as NIEM-conformant types, within strongly-defined elements with 2479 
specific semantics. 2480 

If an external type needs to be extended for use, such extension should be done outside a NIEM-conformant 2481 
namespace.  These structures are intended to encapsulate external content.  They are not indented to introduce 2482 
extensions and modifications to external content into NIEM-conformant namespaces.  If an application schema 2483 
needs to be constructed to conform to an external standard, the schema should be created in a user-defined 2484 
namespace, outside the NIEM-conformant namespaces.  Then, those external components should be referenced 2485 
by NIEM-conformant external adapter types and external container elements, as specified below. 2486 

14.8.4. Details 2487 

This section contains rules for using external standards in NIEM.  The section uses terminology specified by 2488 
[XML-INFOSET].  It also follows  [XMLSCHEMA-1]. 2489 

The namespace prefix “i” is used in this specification as if bound to the namespace URI 2490 
“http://niem.gov/niem/appinfo/0.3”.  This namespace is used by NIEM to describe information that 2491 
occurs in the schema.  Such information may be used by tools to test conformance and to support the data model 2492 
definition of schema content. 2493 

14.8.4.1. Namespace Conformance 2494 

A namespace can be labeled as NIEM-conformant.  Any namespace that is not NIEM-conformant is referred to as 2495 
an external namespace.  A namespace is NIEM-conformant if its reference schema follows NIEM conformance 2496 
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rules.  A schema component must be in a NIEM-conformant namespace to be considered NIEM conformant.  For 2497 
any component of a schema to be conformant, the entire schema must be conformant.  A NIEM-conformant 2498 
schema must claim to be conformant.  This occurs when the document element, the schema element, has a child 2499 
annotation with a child appinfo with a child element i:conformant with the character child "true".  In other 2500 
words, the XPath "/xsd:schema/xsd:annotation/xsd:appinfo/i:conformant" has the value "true". 2501 

<xsd:schema ...> 2502 
  <xsd:annotation> 2503 
    <xsd:appinfo> 2504 
      <i:conformant>true</i:conformant> 2505 
    </xsd:appinfo> 2506 
  </xsd:annotation> 2507 
</xsd:schema> 2508 

This document only specifically addresses conformance issues for NIEM namespaces with respect to use of 2509 
components from external namespaces.   2510 

14.8.4.1.1. Non-Schema Namespaces 2511 

An external namespace may be defined by a non-schema mechanism, such as DTD.  In such a case, a 2512 
placeholder schema would be created to represent the exact constructs referred to from the NIEM-conformant 2513 
schema.  A placeholder schema would not represent the deeper XML content of such namespaces.  Instead, it 2514 
would define placeholder elements and additional required constructs that are further defined by the non-XML 2515 
Schema standard. 2516 

For example, XHTML 1.0, which has no normative XML Schema definition, may be considered an external 2517 
namespace.  XHTML defines a namespace, and numerous elements within that namespace.  Were a NIEM-2518 
conformant schema specification to use the element "xhtml:ul" (an unordered list), it would use a reference.  In 2519 
order for schema validation to proceed normally, a schema would have to define that element.  However, there is 2520 
no such schema for Non-XML Schema specifications.  The schema that is created to fulfill that role is the 2521 
placeholder schema.    Placeholder schemas should only represent the necessary components directly referred to 2522 
from NIEM-conformant schemas.   2523 

14.8.4.2. Importing of External Namespaces 2524 

When NIEM namespaces are imported, the import statements are documented with a description of how the 2525 
namespace is relevant to the namespace being defined.  External (non-NIEM) namespaces should be 2526 
documented with additional information, including: 2527 

1. An indication that the imported namespace is not NIEM-conformant. 2528 

2. The URI for a source of the reference schema for the namespace 2529 

3. Version information 2530 

4. Information about the body responsible for the standard, including: 2531 

a. Contact information 2532 

b. URI 2533 

Additional metadata will be defined, as the NIEM NDR is further defined.  For the time being, the metadata should 2534 
be included as documentation elements. 2535 

14.8.4.3. External Adapter Types 2536 

A NIEM external adapter type is a complex type that has the following qualities: 2537 

1. It is a special form of NIEM-conformant type.  It may be used as the type of any NIEM-conformant 2538 
element. 2539 
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2. An adapter type should compose a single semantic entity.  That is, the subparts of the type should 2540 
appear together because they form the definition for some concept, not simply as a way of wrapping a 2541 
block of external content. 2542 

3. An adapter type should be documented, as should any NIEM-conformant type. 2543 

4. It contains content from an external namespace, including: 2544 

a. Attributes from an external namespace 2545 

b. Attribute groups from an external namespace 2546 

c. A single XSD sequence containing zero or more of: 2547 

(i) Elements from an external namespace 2548 

(ii) Model Groups from an external namespace.  These are named groups of elements defined 2549 
schemas. 2550 

(iii) External container elements, from a NIEM-conformant namespace.  These are used when an 2551 
external type must be used.  They are defined below. 2552 

5. It must extend the "ComplexObjectType" from the NIEM structures namespace 2553 

6. It may not directly reference any other complex or simple types.  Such types should be accessed via an 2554 
external container element.  2555 

7. It may not directly reference other NIEM content. Apart from the "ComplexObjectType", all content of an 2556 
external adapter type should be external. 2557 

8. The content it references may be from more than one external namespace. 2558 

9. Each referenced external component must be individually documented, describing the meaning of the 2559 
external component 2560 

Additional annotations may be introduced as the NDR is developed.   2561 

An example of the simple case shows an adapter type directly referring to an external element: 2562 

<complexType name="PointType"> 2563 
  <annotation> 2564 
    <documentation> 2565 
      SUMMARY OF TYPE GOES HERE 2566 
    </documentation> 2567 
  </annotation> 2568 
  <complexContent> 2569 
    <extension base="s:ComplexObjectType"> 2570 
      <sequence> 2571 
        <element ref="gml:Point"> 2572 
          <annotation> 2573 
            <documentation> 2574 
              DESCRIPTION OF EXTERNAL ELEMENT GOES HERE 2575 
            </documentation> 2576 
          </annotation> 2577 
        </element> 2578 
      </sequence> 2579 
    </extension> 2580 
  </complexContent> 2581 
</complexType> 2582 

An alternate case occurs when types from an external standard need to be used, instead of elements.   2583 
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14.8.4.4. External Container Elements 2584 

This specification introduces the term "External" as a suffix to element names in NIEM-conformant namespaces.  2585 
An element with a name that ends in "External" is referred to as an external container element.  Such an element 2586 
is defined when a NIEM standard needs to reference XML Schema types from an external namespace.   2587 

If an external namespace defines elements that are appropriate for use, the elements should be referenced by 2588 
external adapter types, and external container elements are unnecessary.  External container elements are 2589 
needed to create container elements for types from external namespaces. 2590 

An external container element has the following characteristics: 2591 

1. Its name ends in "External". 2592 

2. It is not a NIEM-conformant element. 2593 

3. It may only be referred to by external adapter types.  It is an error for any other component to refer to 2594 
an external container element. 2595 

4. The type of the element is a simple or complex type from an external namespace.  The element 2596 
definition may not reference any other external components. 2597 

5. An external container element may not specify a substitution group.  2598 

External container elements may not be referenced by standard conformant components.  They may only be 2599 
referenced by external adapter types.   2600 

Here is an example definition of an external container element: 2601 

<element name="PointExternal" type="gml:PointType"> 2602 
  <annotation> 2603 
    <documentation> 2604 
      DESCRIPTION OF EXTERNAL TYPE GOES HERE 2605 
    </documentation> 2606 
  </annotation> 2607 
</element> 2608 

Note that the definition is very simple: it provides a container for an external type, and is clearly labeled as non-2609 
NIEM content by the suffix "External".   2610 

The external container element may be used by an adapter type, as the following example shows: 2611 

<complexType name="PointType"> 2612 
  <annotation> 2613 
    <documentation> 2614 
      SUMMARY OF TYPE GOES HERE 2615 
    </documentation> 2616 
  </annotation> 2617 
  <complexContent> 2618 
    <extension base="s:ComplexObjectType"> 2619 
      <sequence> 2620 
        <element ref="this:PointExternal"/> 2621 
      </sequence> 2622 
    </extension> 2623 
  </complexContent> 2624 
</complexType> 2625 

External container elements are not NIEM-conformant data model components.  Instead, they create container for 2626 
external types.  They are clearly identified external by their names (suffixed with "External").  External elements 2627 
(that come from non-NIEM namespaces) are clearly identified as external by their namespaces. 2628 
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Appendix A. Supporting Files 2629 

Appendix A.1. Schema for Structures Namespace 2630 
<?xml version="1.0" encoding="UTF-8"?> 2631 
<schema 2632 
    attributeFormDefault="qualified" 2633 
    targetNamespace='http://www.it.ojp.gov/jxdm/structures/1' 2634 
    xmlns:this='http://www.it.ojp.gov/jxdm/structures/1' 2635 
    xmlns='http://www.w3.org/2001/XMLSchema'> 2636 
 2637 
  <import  2638 
      namespace="http://www.w3.org/XML/1998/namespace"  2639 
      schemaLocation="xml.xsd"/> 2640 
 2641 
  <attribute name="sequenceID" type="integer"> 2642 
 2643 
  <complexType name="ReferenceType" final="true" block="true"> 2644 
    <attribute name="reference" type="IDREF" use="required"/> 2645 
    <attribute ref="xml:id" use="optional"/> 2646 
  </complexType> 2647 
 2648 
  <element name="Relationship"> 2649 
    <complexTypefinal="true" block="true"> 2650 
      <attribute name="relationshipURI" type="anyURI"  2651 
          use="required"/> 2652 
      <attribute name="relationshipObject" type="IDREF"  2653 
          use="required"/> 2654 
      <attribute name="relationshipSubject" type="IDREF"  2655 
          use="required"/> 2656 
      <attribute ref="xml:id" use="optional"/> 2657 
    </complexType> 2658 
  </element> 2659 
 2660 
</schema> 2661 

Appendix A.2. Schema for entity appinfo namespace 2662 
<?xml version="1.0" encoding="UTF-8"?> 2663 
<schema 2664 
    targetNamespace="http://www.it.ojp.gov/jxdm/appinfo/2"  2665 
    version="1.0" 2666 
    xmlns:this="http://www.it.ojp.gov/jxdm/appinfo/2"  2667 
    xmlns="http://www.w3.org/2001/XMLSchema"> 2668 
 2669 
  <element name="info"> 2670 
    <complexType> 2671 
      <sequence> 2672 
        <element form="qualified" maxOccurs="unbounded"  2673 
            minOccurs="0" name="base"> 2674 
          <complexType> 2675 
            <attribute form="qualified" name="namespace"  2676 
                type="anyURI" use="required"/> 2677 
            <attribute form="qualified" name="name"  2678 
                type="NCName" use="required"/> 2679 
          </complexType> 2680 
        </element> 2681 
      </sequence> 2682 
      <attribute form="qualified" name="deprecated"  2683 
          type="boolean" use="required"/> 2684 
    </complexType> 2685 
  </element> 2686 
 2687 
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</schema> 2688 
 2689 

Appendix A.3. Schema for xml namespace 2690 
<?xml version="1.0" encoding="UTF-8"?> 2691 
<schema 2692 
    targetNamespace="http://www.w3.org/XML/1998/namespace" 2693 
    xmlns="http://www.w3.org/2001/XMLSchema"> 2694 
 2695 
  <attribute name="id" type="ID"/> 2696 
 2697 
</schema> 2698 
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Appendix B. Normative Abbreviations 2699 
This is a table of normative abbreviations, acronyms, and word truncations to be used as specified in . 2700 
Term Definition 
ID Identifier 
ORI Orion value 
 2701 
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[RDFConcepts]:  http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ 2706 

RDF data model:  http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-data-model  2707 

[RFC2119]:  S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 2708 
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 2709 

[RFC3986]:  Berners-Lee, T., et al: Uniform Resource Identifier (URI): Generic Syntax, Request for Comments 2710 
3986, January 2005.  Available from http://www.ietf.org/rfc/rfc3986.txt 2711 

[SchemaForXMLSchema]:  The schema for XML Schema is available at 2712 
http://www.w3.org/2001/XMLSchema.xsd 2713 

[XML]:  Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation 04 February 2004, 2714 
available at http://www.w3.org/TR/2004/REC-xml-20040204/ 2715 

EBNF notation is described at #sec-notation. 2716 

IDREF constraint:  http://www.w3.org/TR/2004/REC-xml-20040204/#idref 2717 

[XML-ID]:  xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005, available from 2718 
http://www.w3.org/TR/2005/PR-xml-id-20050712/. 2719 

[XMLInfoSet]:  XML Information Set (Second Edition), W3C Recommendation 4 February 2004.  Available from 2720 
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/ 2721 

[XMLNamespaces]:  Namespaces in XML, World Wide Web Consortium 14-January-1999, available at 2722 
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 2723 

NCName:  http://www.w3.org/TR/REC-xml-names/#NT-NCName 2724 

[XMLNamespacesErrata]:  Namespaces in XML Errata, 6 December 2002, available from 2725 
http://www.w3.org/XML/xml-names-19990114-errata 2726 

[XMLSchemaDatatypes]:  XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2727 
2004, available at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 2728 

[XMLSchemaStructures]:  XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2729 
2004, available at http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 2730 

[XML-INFOSET]:  XML Information Set (Second Edition), W3C Recommendation 4 February 2004, Available at 2731 
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/ 2732 

IDREFS at #infoitem.attribute 2733 

[XMLSCHEMA-1]:  XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004.  2734 
Available at http://www.w3.org/TR/2004/REC-xmlschema-1-20041028 2735 

[XMLSCHEMA-2]:  XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004. 2736 
Available at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 2737 

IDREFS at #IDREFS 2738 

 2739 
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Appendix D. Revision History 2740 
Revision Date Modifications 
0.4 2005-08-23 Removed in-document tasks.  Formatted for public review. 
0.3 2005-08-10 Processed comments by XSTF 
0.2 2005-07-21 Remove email addresses.  Inserted Appendix B for acronyms.   
0.1 2005-07-21 Initial draft by Webb Roberts 
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Appendix E. Glossary 2741 

This glossary is informative only.  No definitions herein should be considered normative. 2742 

NIEM:  Global Justice XML Data Model 2743 

NIEM-conformant reference schema:  A schema that acts as the definition for its namespace.  It maintains 2744 
documentation that allows it to be shared and interoperable as a complete NIEM component. 2745 

NIEM-conformant schema:  A schema that maintains the XML Schema syntax requirements of NIEM, while not 2746 
necessarily containing all content for a namespace, and not necessarily containing all documentation 2747 
needed for full interoperability and NIEM integration.  NIEM-conformant reference schemas and NIEM-2748 
conformant subset schemas fall under this category, as do extension schemas and document schemas. 2749 

NIEM-conformant subset schema:  A schema, based on a NIEM-conformant reference schema that is built to 2750 
validate a subset of the content of the full reference schema.  It is built from a reference schema using 2751 
rules specified in this document. 2752 

NIEM constraint schema:  A schema, used in conjunction with NIEM-conformant schema, that applies a set of 2753 
user-designated constraints on XML data instances. 2754 

Global:  The Global Justice Information Sharing Initiative.  For more information, see [Global] 2755 

IEPD: Information Exchange Package Description 2756 

NIEM: National Information Exchange Model 2757 

XSTF:  The Global XML Structure Task Force, the organization supervising the NIEM 2758 

 2759 
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Appendix F. Notices 2760 

This document and the information contained herein is provided on an “AS IS” basis and the authors DISCLAIM 2761 
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 2762 
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES 2763 
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 2764 


